Global and Regional Modeling of Clouds and Aerosols in the Marine Boundary Layer During VOCALS

Global and Regional Modeling of Clouds and Aerosols in the Marine Boundary Layer During VOCALS PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 153

Get Book Here

Book Description
A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October-November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar to observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol-cloud interactions in the MBL, though quantitative estimation of aerosol-cloud interactions and aerosol indirect effects of MBL clouds with these models remains uncertain.

Global and Regional Modeling of Clouds and Aerosols in the Marine Boundary Layer During VOCALS

Global and Regional Modeling of Clouds and Aerosols in the Marine Boundary Layer During VOCALS PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 153

Get Book Here

Book Description
A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October-November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar to observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol-cloud interactions in the MBL, though quantitative estimation of aerosol-cloud interactions and aerosol indirect effects of MBL clouds with these models remains uncertain.

Aerosol-Cloud Interactions from Urban, Regional, to Global Scales

Aerosol-Cloud Interactions from Urban, Regional, to Global Scales PDF Author: Yuan Wang
Publisher: Springer
ISBN: 3662471752
Category : Science
Languages : en
Pages : 100

Get Book Here

Book Description
The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.

Aerosol Cloud Interactions in Southeast Pacific Stratocumulus

Aerosol Cloud Interactions in Southeast Pacific Stratocumulus PDF Author: Rhea George
Publisher:
ISBN:
Category : Aerosols
Languages : en
Pages : 145

Get Book Here

Book Description
The influence of anthropogenic aerosols on cloud radiative properties in the persistent southeast Pacific stratocumulus deck is investigated using MODIS satellite observations, in situ data from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), and WRF-Chem, a regional model with interactive chemistry and aerosols. An albedo proxy is derived based on the fractional coverage of low cloud (a macrophysical field) and the cloud albedo, with the latter broken down into contributions from microphysics (cloud droplet concentration, N[subscript d] and macrophysics (liquid water path). Albedo variability is dominated by low cloud fraction variability, except within 10-15° of the South American coast, where cloud albedo variability contributes significantly. Covariance between cloud fraction and cloud albedo also contributes significantly to the variance in albedo, which highlights how complex and inseparable the factors controlling albedo are. N[subscript d] variability contributes only weakly, which emphasizes that attributing albedo variability to the indirect effects of aerosols against the backdrop of natural meteorological variability is extremely challenging. Specific cases of aerosol changes can have strong impacts on albedo. We identify a pathway for periodic anthropogenic aerosol transport to the unpolluted marine stratocumulus>1000 km offshore, which strongly enhances N[subscript d] and albedo in in zonally-elongated `hook'-shaped arc. Hook development occurs with N[subscript d] increasing to polluted levels over the remote ocean primarily due to entrainment of a large number of small aerosols from the free troposphere that contribute a relatively small amount of aerosol mass to the marine boundary layer. Strong, deep offshore flow needed to transport continental aerosols to the remote ocean is favored by a trough approaching the South American coast and a southeastward shift of the climatological subtropical high pressure system. DMS significantly influences the aerosol number and size distributions, but does not cause hooks. The Twomey effect contributes 50-80% of the total aerosol indirect effect (AIE) both near sources and offshore during hook events. Meteorological variability between simulations can swamp the signal of AIEs, particularly due to the binary model cloud fraction field and distinguishing AIE requires determination of appropriate spatial and temporal averaging scales over which AIE is significant above this noise.

New Approaches for Multidimensional Signal Processing

New Approaches for Multidimensional Signal Processing PDF Author: Roumen Kountchev
Publisher: Springer Nature
ISBN: 9811685584
Category : Technology & Engineering
Languages : en
Pages : 330

Get Book Here

Book Description
This book comprises a collection of papers presented at the International Workshop on New Approaches for Multidimensional Signal Processing (NAMSP 2021), held at Technical University of Sofia, Sofia, Bulgaria, during 08–10 July 2021. The book covers research papers in the field of N-dimensional multicomponent image processing, multidimensional image representation and super-resolution, 3D image processing and reconstruction, MD computer vision systems, multidimensional multimedia systems, neural networks for MD image processing, data-based MD image retrieval and knowledge data mining, watermarking, hiding and encryption of MD images, MD image processing in robot systems, tensor-based data processing, 3D and multi-view visualization, forensic analysis systems for MD images and many more.

Experimental and Modeling Studies of Interactions of Marine Aerosols and Clouds

Experimental and Modeling Studies of Interactions of Marine Aerosols and Clouds PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
The primary goals of this research were to address the following key questions regarding marine aerosol/ cloud interactions: (1) What factors control the abundance and vertical distribution of aerosol in the marine boundary layer? (2) How do these factors affect the formation and lifetime of marine clouds? These questions have been addressed through a combination of modeling and experimental approaches, as described below. The goal of the modeling component was to produce a model description of aerosol evolution and aerosol / cloud interaction that can be applied to a variety of marine boundary layer scenarios. The specific objective of this component was to develop a model for prediction of the effects of aerosol characteristics on cloud formation and evolution, and, in turn, the effects of cloud processes on the marine aerosol. The models built in this project can be used to study the role of aerosol in cloud modification, including ship tracks and indirect climate effects. The goals of the experimental component were to develop new measurement techniques aimed at elucidating some important aerosol / cloud interactions, and to adapt and use these techniques in field work involving characterization of marine aerosol. A particular objective was the development of techniques for determination of size dependent particle properties with high time resolution.

Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) Final Campaign Report

Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) Final Campaign Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Get Book Here

Book Description
The extensive coverage of low clouds over the subtropical eastern oceans greatly impacts the current climate. In addition, the response of low clouds to changes in atmospheric greenhouse gases and aerosols is a major source of uncertainty, which thwarts accurate prediction of future climate change. Low clouds are poorly simulated in climate models, partly due to inadequate long-term simultaneous observations of their macrophysical and microphysical structure, radiative effects, and associated aerosol distribution in regions where their impact is greatest. The thickness and extent of subtropical low clouds is dependent on tight couplings between surface fluxes of heat and moisture, radiative cooling, boundary layer turbulence, and precipitation (much of which evaporates before reaching the ocean surface and is closely connected to the abundance of cloud condensation nuclei). These couplings have been documented as a result of past field programs and model studies. However, extensive research is still required to achieve a quantitative understanding sufficient for developing parameterizations, which adequately predict aerosol indirect effects and low cloud response to climate perturbations. This is especially true of the interactions between clouds, aerosol, and precipitation. These processes take place in an ever-changing synoptic environment that can confound interpretation of short time period observations.

A Modeling Case Study of Post-frontal Mixed-phase Clouds in the Marine Boundary Layer Over the Southern Ocean in MARCUS

A Modeling Case Study of Post-frontal Mixed-phase Clouds in the Marine Boundary Layer Over the Southern Ocean in MARCUS PDF Author: Yishi Hu
Publisher:
ISBN:
Category : Boundary layer (Meteorology)
Languages : en
Pages : 50

Get Book Here

Book Description
A multi-day period (February 23-26, 2018) of post-frontal shallow convective mixed-phase clouds observed during the shipborne Measurements of Aerosols, Radiation and CloUds over the Southern Ocean (MARCUS) field campaign is studied using the Weather Research and Forecast (WRF) model with the aim of understanding ice production as well as model sensitivity to ice process parameterizations. The Cloud-resolving model Radar SIMulator (CRSIM) is firstly used in this study to convert WRF S-band output into W-band radar observables. Comparisons between the observations and simulations suggest that the model captures the observed synoptic pattern and shallow convective nature of the mixed-phase clouds. The simulated clouds are mostly precipitating and liquid dominated. Interestingly, the control simulation significantly underestimates the ice content and overestimates the supercooled liquid water, which is contrary to the bias common in global climate models. Sensitivity simulations targeted at ice production processes suggest that the rime splintering process is not a primary contributor and that the simulated clouds show negligible sensitivity to cloud droplet number concentrations. Higher number concentrations of ice nuclei do not guarantee more ice production overall. However, the simulated mixed-phase clouds are found to be highly sensitive to the implementation of immersion freezing and condensation/deposition freezing. By increasing immersion freezing of cloud droplets or relaxing thresholds for condensation/deposition freezing, the model significantly improves its performance in producing ice. The key results of this work call for an increase in observations of ice nuclei, especially over the remote Southern Ocean and at relatively high temperatures.

Climate Intervention

Climate Intervention PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309314852
Category : Science
Languages : en
Pages : 276

Get Book Here

Book Description
The growing problem of changing environmental conditions caused by climate destabilization is well recognized as one of the defining issues of our time. The root problem is greenhouse gas emissions, and the fundamental solution is curbing those emissions. Climate geoengineering has often been considered to be a "last-ditch" response to climate change, to be used only if climate change damage should produce extreme hardship. Although the likelihood of eventually needing to resort to these efforts grows with every year of inaction on emissions control, there is a lack of information on these ways of potentially intervening in the climate system. As one of a two-book report, this volume of Climate Intervention discusses albedo modification - changing the fraction of incoming solar radiation that reaches the surface. This approach would deliberately modify the energy budget of Earth to produce a cooling designed to compensate for some of the effects of warming associated with greenhouse gas increases. The prospect of large-scale albedo modification raises political and governance issues at national and global levels, as well as ethical concerns. Climate Intervention: Reflecting Sunlight to Cool Earth discusses some of the social, political, and legal issues surrounding these proposed techniques. It is far easier to modify Earth's albedo than to determine whether it should be done or what the consequences might be of such an action. One serious concern is that such an action could be unilaterally undertaken by a small nation or smaller entity for its own benefit without international sanction and regardless of international consequences. Transparency in discussing this subject is critical. In the spirit of that transparency, Climate Intervention: Reflecting Sunlight to Cool Earth was based on peer-reviewed literature and the judgments of the authoring committee; no new research was done as part of this study and all data and information used are from entirely open sources. By helping to bring light to this topic area, this book will help leaders to be far more knowledgeable about the consequences of albedo modification approaches before they face a decision whether or not to use them.

Next Generation Earth System Prediction

Next Generation Earth System Prediction PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309388805
Category : Science
Languages : en
Pages : 351

Get Book Here

Book Description
As the nation's economic activities, security concerns, and stewardship of natural resources become increasingly complex and globally interrelated, they become ever more sensitive to adverse impacts from weather, climate, and other natural phenomena. For several decades, forecasts with lead times of a few days for weather and other environmental phenomena have yielded valuable information to improve decision-making across all sectors of society. Developing the capability to forecast environmental conditions and disruptive events several weeks and months in advance could dramatically increase the value and benefit of environmental predictions, saving lives, protecting property, increasing economic vitality, protecting the environment, and informing policy choices. Over the past decade, the ability to forecast weather and climate conditions on subseasonal to seasonal (S2S) timescales, i.e., two to fifty-two weeks in advance, has improved substantially. Although significant progress has been made, much work remains to make S2S predictions skillful enough, as well as optimally tailored and communicated, to enable widespread use. Next Generation Earth System Predictions presents a ten-year U.S. research agenda that increases the nation's S2S research and modeling capability, advances S2S forecasting, and aids in decision making at medium and extended lead times.

Aerosol-cloud-precipitation Interaction in Ultraclean Layers and Optically Thin Veil Cloud System in the Stratocumulus to Cumulus Transition

Aerosol-cloud-precipitation Interaction in Ultraclean Layers and Optically Thin Veil Cloud System in the Stratocumulus to Cumulus Transition PDF Author: Kuan-Ting O
Publisher:
ISBN:
Category :
Languages : en
Pages : 114

Get Book Here

Book Description
Recent observational studies have shown that ultraclean layers (UCLs) and optically thin veil clouds associated with precipitating deep cumulus are common features of the marine boundary layer in the stratocumulus to cumulus transition. The very low number concentration of cloud droplet and cloud condensation nuclei in UCLs, strong precipitation in the associated cumulus, together with the low optical thickness of optically thin veil clouds, make such a system particularly appealing for the study of aerosol-cloud-precipitation interactions. More importantly, low cloud radiative properties biases (i.e., too few, too bright low cloud bias) in the current generation of global climate models (GCMs) seems strongly associated with the uncertainty in representing optically thin veil clouds, and these clouds may serve as an important constraint on the too few, too bright problem. However, systematic investigation of (1) global contribution and seasonal variability of optically thin veil clouds and (2) aerosol-cloud-precipitation interactions in UCLs and optically thin veil clouds is still lacking. We aim to investigate these problems with aircraft remote sensing, satellite measurements and a cloud resolving model. The dissertation is organized into the following three sections: • Using high resolution aircraft remote sensing measurement to characterize optically thin veil clouds in the stratocumulus to cumulus transition (SCT): Aircraft remote sensing measurements (i.e., lidar and radar) taken abroad NSF/NCAR GV-HIAPER research flights flown during the Cloud System Evolution in the Trades field campaign (CSET) sampled marine air masses between Sacramento, California (38.68N, 121.58W), and Kona (19.68N, 156.08W) are used in our study. Optically thin veil clouds, defined as the subset of low clouds with cloud bases > 1 km that do not fully attenuate high-spectral-resolution lidar signal (HSRL) (i.e., indicating optical depths 3), comprise considerable cover of low clouds (~ 40 %) over the SCT. It is found that optically thin veil clouds are also geometrically thin with cloud thickness ~ 200 m, and commonly reside in the upper boundary layer with average cloud base 1.5 km. • Investigating deeper, precipitating PBLs associated with optically thin veil clouds in the Sc-Cu Transition using spaceborne satellite measurements: Variability and vertical structure of optically thin veil clouds over SCT regions around the globe are investigated using both passive and active satellite observations. These observations reveal pronounced relationships between optically thin veil clouds, strong precipitation, deep planetary boundary layer (PBL) height and low cloud droplet number concentration (CDNC). The results are in agreement with the hypothesis that the low optical thickness of veil clouds over the SCT is contingent on the low CDNC caused by strong precipitation scavenging occurring in active cumuli, a process whose efficiency is strongly dependent on maximum condensate amount in updrafts and thus is highly constrained by PBL height. • Exploring aerosol-cloud-precipitation processes in UCLs and optically thin veil clouds system using a cloud resolving model: Characteristics of UCLs and optically thin veil clouds are investigated in the cloud resolving model (CRM). The domain mean cloud and aerosol properties in UCLs and optically thin veil clouds from CRM simulations agree with recent observational studies in general. The simulation results show that the detrainment from active precipitating cumulus produces the stratiform veil clouds, which are strongly depleted in particle concentration due to very efficient coalescence-scavenging process in ascending parcels passing through cumulus towers. The simulation shows a median CDNC in thin veil clouds of 5.8 cm−3, implying that majority of thin veil clouds are UCLs as well and confirming the strong connection between veil clouds and UCLs. In addition, there is a strong correlation between surface precipitation and the fraction of low clouds that are UCLs, and such correlation implies the importance of precipitation scavenging for the formation of UCLs. A cloud resolving model coupled with a prognostic aerosol scheme is used in our study, enabling characterization of the spatiotemporal variability of aerosol in the boundary layer. The results show that depletion of aerosol concentration starts first in the upper boundary layer that is associated with in-cloud coalescence scavenging process. The evaporation of veil clouds leaves very low CCN number concentration (Na