Getting Started with Azure OpenAI

Getting Started with Azure OpenAI PDF Author: Shimon Ifrah
Publisher: Springer Nature
ISBN:
Category :
Languages : en
Pages : 270

Get Book Here

Book Description


Azure OpenAI Service for Cloud Native Applications

Azure OpenAI Service for Cloud Native Applications PDF Author: Adrián González Sánchez
Publisher: "O'Reilly Media, Inc."
ISBN: 1098154967
Category : Computers
Languages : en
Pages : 249

Get Book Here

Book Description
Get the details, examples, and best practices you need to build generative AI applications, services, and solutions using the power of Azure OpenAI Service. With this comprehensive guide, Microsoft AI specialist Adrián González Sánchez examines the integration and utilization of Azure OpenAI Service—using powerful generative AI models such as GPT-4 and GPT-4o—within the Microsoft Azure cloud computing platform. To guide you through the technical details of using Azure OpenAI Service, this book shows you how to set up the necessary Azure resources, prepare end-to-end architectures, work with APIs, manage costs and usage, handle data privacy and security, and optimize performance. You'll learn various use cases where Azure OpenAI Service models can be applied, and get valuable insights from some of the most relevant AI and cloud experts. Ideal for software and cloud developers, product managers, architects, and engineers, as well as cloud-enabled data scientists, this book will help you: Learn how to implement cloud native applications with Azure OpenAI Service Deploy, customize, and integrate Azure OpenAI Service with your applications Customize large language models and orchestrate knowledge with company-owned data Use advanced roadmaps to plan your generative AI project Estimate cost and plan generative AI implementations for adopter companies

Responsible AI in the Enterprise

Responsible AI in the Enterprise PDF Author: Adnan Masood
Publisher: Packt Publishing Ltd
ISBN: 1803249668
Category : Computers
Languages : en
Pages : 318

Get Book Here

Book Description
Build and deploy your AI models successfully by exploring model governance, fairness, bias, and potential pitfalls Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn ethical AI principles, frameworks, and governance Understand the concepts of fairness assessment and bias mitigation Introduce explainable AI and transparency in your machine learning models Book DescriptionResponsible AI in the Enterprise is a comprehensive guide to implementing ethical, transparent, and compliant AI systems in an organization. With a focus on understanding key concepts of machine learning models, this book equips you with techniques and algorithms to tackle complex issues such as bias, fairness, and model governance. Throughout the book, you’ll gain an understanding of FairLearn and InterpretML, along with Google What-If Tool, ML Fairness Gym, IBM AI 360 Fairness tool, and Aequitas. You’ll uncover various aspects of responsible AI, including model interpretability, monitoring and management of model drift, and compliance recommendations. You’ll gain practical insights into using AI governance tools to ensure fairness, bias mitigation, explainability, privacy compliance, and privacy in an enterprise setting. Additionally, you’ll explore interpretability toolkits and fairness measures offered by major cloud AI providers like IBM, Amazon, Google, and Microsoft, while discovering how to use FairLearn for fairness assessment and bias mitigation. You’ll also learn to build explainable models using global and local feature summary, local surrogate model, Shapley values, anchors, and counterfactual explanations. By the end of this book, you’ll be well-equipped with tools and techniques to create transparent and accountable machine learning models.What you will learn Understand explainable AI fundamentals, underlying methods, and techniques Explore model governance, including building explainable, auditable, and interpretable machine learning models Use partial dependence plot, global feature summary, individual condition expectation, and feature interaction Build explainable models with global and local feature summary, and influence functions in practice Design and build explainable machine learning pipelines with transparency Discover Microsoft FairLearn and marketplace for different open-source explainable AI tools and cloud platforms Who this book is for This book is for data scientists, machine learning engineers, AI practitioners, IT professionals, business stakeholders, and AI ethicists who are responsible for implementing AI models in their organizations.

Microsoft Azure for Beginners

Microsoft Azure for Beginners PDF Author: Adney Ainsley
Publisher: Createspace Independent Publishing Platform
ISBN: 9781978385641
Category :
Languages : en
Pages : 84

Get Book Here

Book Description
Do you know what is Azure? Do you have any idea why and how it is used? If you want the answers to these questions, you are at the right place. This Azure Tutorial book will give you an introduction to Microsoft Azure covering all the Why, What and How aspects of it. In this book, we will learn about Microsoft Azure in the following sequence: 1. What is Cloud Computing? 2. Azure Job Trends 3. What is Microsoft Azure? 4. Azure Management Portal 5. Azure Services 6. Azure Pricing 7. Azure Certifications 8. Azure Demo: Launching Ubuntu Server

Programming Large Language Models with Azure Open AI

Programming Large Language Models with Azure Open AI PDF Author: Francesco Esposito
Publisher: Microsoft Press
ISBN: 0138280452
Category : Computers
Languages : en
Pages : 605

Get Book Here

Book Description
Use LLMs to build better business software applications Autonomously communicate with users and optimize business tasks with applications built to make the interaction between humans and computers smooth and natural. Artificial Intelligence expert Francesco Esposito illustrates several scenarios for which a LLM is effective: crafting sophisticated business solutions, shortening the gap between humans and software-equipped machines, and building powerful reasoning engines. Insight into prompting and conversational programming—with specific techniques for patterns and frameworks—unlock how natural language can also lead to a new, advanced approach to coding. Concrete end-to-end demonstrations (featuring Python and ASP.NET Core) showcase versatile patterns of interaction between existing processes, APIs, data, and human input. Artificial Intelligence expert Francesco Esposito helps you: Understand the history of large language models and conversational programming Apply prompting as a new way of coding Learn core prompting techniques and fundamental use-cases Engineer advanced prompts, including connecting LLMs to data and function calling to build reasoning engines Use natural language in code to define workflows and orchestrate existing APIs Master external LLM frameworks Evaluate responsible AI security, privacy, and accuracy concerns Explore the AI regulatory landscape Build and implement a personal assistant Apply a retrieval augmented generation (RAG) pattern to formulate responses based on a knowledge base Construct a conversational user interface For IT Professionals and Consultants For software professionals, architects, lead developers, programmers, and Machine Learning enthusiasts For anyone else interested in natural language processing or real-world applications of human-like language in software

Generative AI Security

Generative AI Security PDF Author: Ken Huang
Publisher: Springer Nature
ISBN: 3031542525
Category :
Languages : en
Pages : 367

Get Book Here

Book Description


Modern Generative AI with ChatGPT and OpenAI Models

Modern Generative AI with ChatGPT and OpenAI Models PDF Author: Valentina Alto
Publisher: Packt Publishing Ltd
ISBN: 1805122835
Category : Computers
Languages : en
Pages : 286

Get Book Here

Book Description
Harness the power of AI with innovative, real-world applications, and unprecedented productivity boosts, powered by the latest advancements in AI technology like ChatGPT and OpenAI Purchase of the print or Kindle book includes a free PDF eBook Key Features Explore the theory behind generative AI models and the road to GPT3 and GPT4 Become familiar with ChatGPT's applications to boost everyday productivity Learn to embed OpenAI models into applications using lightweight frameworks like LangChain Book Description Generative AI models and AI language models are becoming increasingly popular due to their unparalleled capabilities. This book will provide you with insights into the inner workings of the LLMs and guide you through creating your own language models. You'll start with an introduction to the field of generative AI, helping you understand how these models are trained to generate new data. Next, you'll explore use cases where ChatGPT can boost productivity and enhance creativity. You'll learn how to get the best from your ChatGPT interactions by improving your prompt design and leveraging zero, one, and few-shots learning capabilities. The use cases are divided into clusters of marketers, researchers, and developers, which will help you apply what you learn in this book to your own challenges faster. You'll also discover enterprise-level scenarios that leverage OpenAI models' APIs available on Azure infrastructure; both generative models like GPT-3 and embedding models like Ada. For each scenario, you'll find an end-to-end implementation with Python, using Streamlit as the frontend and the LangChain SDK to facilitate models' integration into your applications. By the end of this book, you'll be well equipped to use the generative AI field and start using ChatGPT and OpenAI models' APIs in your own projects. What you will learn Understand generative AI concepts from basic to intermediate level Focus on the GPT architecture for generative AI models Maximize ChatGPT's value with an effective prompt design Explore applications and use cases of ChatGPT Use OpenAI models and features via API calls Build and deploy generative AI systems with Python Leverage Azure infrastructure for enterprise-level use cases Ensure responsible AI and ethics in generative AI systems Who this book is for This book is for individuals interested in boosting their daily productivity; businesspersons looking to dive deeper into real-world applications to empower their organizations; data scientists and developers trying to identify ways to boost ML models and code; marketers and researchers seeking to leverage use cases in their domain – all by using Chat GPT and OpenAI Models. A basic understanding of Python is required; however, the book provides theoretical descriptions alongside sections with code so that the reader can learn the concrete use case application without running the scripts.

Data Cleaning with Power BI

Data Cleaning with Power BI PDF Author: Gus Frazer
Publisher: Packt Publishing Ltd
ISBN: 1805126059
Category : Computers
Languages : en
Pages : 340

Get Book Here

Book Description
Unlock the full potential of your data by mastering the art of cleaning, preparing, and transforming data with Power BI for smarter insights and data visualizations Key Features Implement best practices for connecting, preparing, cleaning, and analyzing multiple sources of data using Power BI Conduct exploratory data analysis (EDA) using DAX, PowerQuery, and the M language Apply your newfound knowledge to tackle common data challenges for visualizations in Power BI Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMicrosoft Power BI offers a range of powerful data cleaning and preparation options through tools such as DAX, Power Query, and the M language. However, despite its user-friendly interface, mastering it can be challenging. Whether you're a seasoned analyst or a novice exploring the potential of Power BI, this comprehensive guide equips you with techniques to transform raw data into a reliable foundation for insightful analysis and visualization. This book serves as a comprehensive guide to data cleaning, starting with data quality, common data challenges, and best practices for handling data. You’ll learn how to import and clean data with Query Editor and transform data using the M query language. As you advance, you’ll explore Power BI’s data modeling capabilities for efficient cleaning and establishing relationships. Later chapters cover best practices for using Power Automate for data cleaning and task automation. Finally, you’ll discover how OpenAI and ChatGPT can make data cleaning in Power BI easier. By the end of the book, you will have a comprehensive understanding of data cleaning concepts, techniques, and how to use Power BI and its tools for effective data preparation.What you will learn Connect to data sources using both import and DirectQuery options Use the Query Editor to apply data transformations Transform your data using the M query language Design clean and optimized data models by creating relationships and DAX calculations Perform exploratory data analysis using Power BI Address the most common data challenges with best practices Explore the benefits of using OpenAI, ChatGPT, and Microsoft Copilot for simplifying data cleaning Who this book is for If you’re a data analyst, business intelligence professional, business analyst, data scientist, or anyone who works with data on a regular basis, this book is for you. It’s a useful resource for anyone who wants to gain a deeper understanding of data quality issues and best practices for data cleaning in Power BI. If you have a basic knowledge of BI tools and concepts, this book will help you advance your skills in Power BI.

Building Intelligent Apps with .NET and Azure AI Services

Building Intelligent Apps with .NET and Azure AI Services PDF Author: Ashirwad Satapathi
Publisher: Springer Nature
ISBN:
Category :
Languages : en
Pages : 209

Get Book Here

Book Description


Generative AI for Cloud Solutions

Generative AI for Cloud Solutions PDF Author: Paul Singh
Publisher: Packt Publishing Ltd
ISBN: 1835080162
Category : Computers
Languages : en
Pages : 301

Get Book Here

Book Description
Explore Generative AI, the engine behind ChatGPT, and delve into topics like LLM-infused frameworks, autonomous agents, and responsible innovation, to gain valuable insights into the future of AI Key Features Gain foundational GenAI knowledge and understand how to scale GenAI/ChatGPT in the cloud Understand advanced techniques for customizing LLMs for organizations via fine-tuning, prompt engineering, and responsible AI Peek into the future to explore emerging trends like multimodal AI and autonomous agents Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionGenerative artificial intelligence technologies and services, including ChatGPT, are transforming our work, life, and communication landscapes. To thrive in this new era, harnessing the full potential of these technologies is crucial. Generative AI for Cloud Solutions is a comprehensive guide to understanding and using Generative AI within cloud platforms. This book covers the basics of cloud computing and Generative AI/ChatGPT, addressing scaling strategies and security concerns. With its help, you’ll be able to apply responsible AI practices and other methods such as fine-tuning, RAG, autonomous agents, LLMOps, and Assistants APIs. As you progress, you’ll learn how to design and implement secure and scalable ChatGPT solutions on the cloud, while also gaining insights into the foundations of building conversational AI, such as chatbots. This process will help you customize your AI applications to suit your specific requirements. By the end of this book, you’ll have gained a solid understanding of the capabilities of Generative AI and cloud computing, empowering you to develop efficient and ethical AI solutions for a variety of applications and services.What you will learn Get started with the essentials of generative AI, LLMs, and ChatGPT, and understand how they function together Understand how we started applying NLP to concepts like transformers Grasp the process of fine-tuning and developing apps based on RAG Explore effective prompt engineering strategies Acquire insights into the app development frameworks and lifecycles of LLMs, including important aspects of LLMOps, autonomous agents, and Assistants APIs Discover how to scale and secure GenAI systems, while understanding the principles of responsible AI Who this book is for This artificial intelligence book is for aspiring cloud architects, data analysts, cloud developers, data scientists, AI researchers, technical business leaders, and technology evangelists looking to understanding the interplay between GenAI and cloud computing. Some chapters provide a broad overview of GenAI, which are suitable for readers with basic to no prior AI experience, aspiring to harness AI's potential. Other chapters delve into technical concepts that require intermediate data and AI skills. A basic understanding of a cloud ecosystem is required to get the most out of this book.