Author: Gilbert Helmberg
Publisher: Walter de Gruyter
ISBN: 3110206617
Category : Mathematics
Languages : en
Pages : 189
Book Description
The first instance of pre-computer fractals was noted by the French mathematician Gaston Julia. He wondered what a complex polynomial function would look like, such as the ones named after him (in the form of z2 + c, where c is a complex constant with real and imaginary parts). The idea behind this formula is that one takes the x and y coordinates of a point z, and plug them into z in the form of x + i*y, where i is the square root of -1, square this number, and then add c, a constant. Then plug the resulting pair of real and imaginary numbers back into z, run the operation again, and keep doing that until the result is greater than some number. The number of times you have to run the equations to get out of an 'orbit' not specified here can be assigned a colour and then the pixel (x,y) gets turned that colour, unless those coordinates can't get out of their orbit, in which case they are made black. Later it was Benoit Mandelbrot who used computers to produce fractals. A basic property of fractals is that they contain a large degree of self similarity, i.e., they usually contain little copies within the original, and these copies also have infinite detail. That means the more you zoom in on a fractal, the more detail you get, and this keeps going on forever and ever. The well-written book 'Getting acquainted with fractals' by Gilbert Helmberg provides a mathematically oriented introduction to fractals, with a focus upon three types of fractals: fractals of curves, attractors for iterative function systems in the plane, and Julia sets. The presentation is on an undergraduate level, with an ample presentation of the corresponding mathematical background, e.g., linear algebra, calculus, algebra, geometry, topology, measure theory and complex analysis. The book contains over 170 color illustrations.
Getting Acquainted with Fractals
Author: Gilbert Helmberg
Publisher: Walter de Gruyter
ISBN: 3110206617
Category : Mathematics
Languages : en
Pages : 189
Book Description
The first instance of pre-computer fractals was noted by the French mathematician Gaston Julia. He wondered what a complex polynomial function would look like, such as the ones named after him (in the form of z2 + c, where c is a complex constant with real and imaginary parts). The idea behind this formula is that one takes the x and y coordinates of a point z, and plug them into z in the form of x + i*y, where i is the square root of -1, square this number, and then add c, a constant. Then plug the resulting pair of real and imaginary numbers back into z, run the operation again, and keep doing that until the result is greater than some number. The number of times you have to run the equations to get out of an 'orbit' not specified here can be assigned a colour and then the pixel (x,y) gets turned that colour, unless those coordinates can't get out of their orbit, in which case they are made black. Later it was Benoit Mandelbrot who used computers to produce fractals. A basic property of fractals is that they contain a large degree of self similarity, i.e., they usually contain little copies within the original, and these copies also have infinite detail. That means the more you zoom in on a fractal, the more detail you get, and this keeps going on forever and ever. The well-written book 'Getting acquainted with fractals' by Gilbert Helmberg provides a mathematically oriented introduction to fractals, with a focus upon three types of fractals: fractals of curves, attractors for iterative function systems in the plane, and Julia sets. The presentation is on an undergraduate level, with an ample presentation of the corresponding mathematical background, e.g., linear algebra, calculus, algebra, geometry, topology, measure theory and complex analysis. The book contains over 170 color illustrations.
Publisher: Walter de Gruyter
ISBN: 3110206617
Category : Mathematics
Languages : en
Pages : 189
Book Description
The first instance of pre-computer fractals was noted by the French mathematician Gaston Julia. He wondered what a complex polynomial function would look like, such as the ones named after him (in the form of z2 + c, where c is a complex constant with real and imaginary parts). The idea behind this formula is that one takes the x and y coordinates of a point z, and plug them into z in the form of x + i*y, where i is the square root of -1, square this number, and then add c, a constant. Then plug the resulting pair of real and imaginary numbers back into z, run the operation again, and keep doing that until the result is greater than some number. The number of times you have to run the equations to get out of an 'orbit' not specified here can be assigned a colour and then the pixel (x,y) gets turned that colour, unless those coordinates can't get out of their orbit, in which case they are made black. Later it was Benoit Mandelbrot who used computers to produce fractals. A basic property of fractals is that they contain a large degree of self similarity, i.e., they usually contain little copies within the original, and these copies also have infinite detail. That means the more you zoom in on a fractal, the more detail you get, and this keeps going on forever and ever. The well-written book 'Getting acquainted with fractals' by Gilbert Helmberg provides a mathematically oriented introduction to fractals, with a focus upon three types of fractals: fractals of curves, attractors for iterative function systems in the plane, and Julia sets. The presentation is on an undergraduate level, with an ample presentation of the corresponding mathematical background, e.g., linear algebra, calculus, algebra, geometry, topology, measure theory and complex analysis. The book contains over 170 color illustrations.
Wavelets and Fractals in Earth System Sciences
Author: E. Chandrasekhar
Publisher: Taylor & Francis
ISBN: 146655360X
Category : Science
Languages : en
Pages : 306
Book Description
The subject of wavelet analysis and fractal analysis is fast developing and has drawn a great deal of attention in varied disciplines of science and engineering. Over the past couple of decades, wavelets, multiresolution, and multifractal analyses have been formalized into a thorough mathematical framework and have found a variety of applications w
Publisher: Taylor & Francis
ISBN: 146655360X
Category : Science
Languages : en
Pages : 306
Book Description
The subject of wavelet analysis and fractal analysis is fast developing and has drawn a great deal of attention in varied disciplines of science and engineering. Over the past couple of decades, wavelets, multiresolution, and multifractal analyses have been formalized into a thorough mathematical framework and have found a variety of applications w
Chaos and Fractals
Author: Heinz-Otto Peitgen
Publisher: Springer Science & Business Media
ISBN: 1475747403
Category : Mathematics
Languages : en
Pages : 1013
Book Description
For almost ten years chaos and fractals have been enveloping many areas of mathematics and the natural sciences in their power, creativity and expanse. Reaching far beyond the traditional bounds of mathematics and science to the realms of popular culture, they have captured the attention and enthusiasm of a worldwide audience. The fourteen chapters of the book cover the central ideas and concepts, as well as many related topics including, the Mandelbrot Set, Julia Sets, Cellular Automata, L-Systems, Percolation and Strange Attractors, and each closes with the computer code for a central experiment. In the two appendices, Yuval Fisher discusses the details and ideas of fractal image compression, while Carl J.G. Evertsz and Benoit Mandelbrot introduce the foundations and implications of multifractals.
Publisher: Springer Science & Business Media
ISBN: 1475747403
Category : Mathematics
Languages : en
Pages : 1013
Book Description
For almost ten years chaos and fractals have been enveloping many areas of mathematics and the natural sciences in their power, creativity and expanse. Reaching far beyond the traditional bounds of mathematics and science to the realms of popular culture, they have captured the attention and enthusiasm of a worldwide audience. The fourteen chapters of the book cover the central ideas and concepts, as well as many related topics including, the Mandelbrot Set, Julia Sets, Cellular Automata, L-Systems, Percolation and Strange Attractors, and each closes with the computer code for a central experiment. In the two appendices, Yuval Fisher discusses the details and ideas of fractal image compression, while Carl J.G. Evertsz and Benoit Mandelbrot introduce the foundations and implications of multifractals.
Invitation to Contemporary Physics
Author: Quang Ho-Kim
Publisher: World Scientific
ISBN: 9789812383037
Category : Science
Languages : en
Pages : 506
Book Description
Readership: Students, researchers in physics, chemistry, engineering and mathematics, science writers and general readers.
Publisher: World Scientific
ISBN: 9789812383037
Category : Science
Languages : en
Pages : 506
Book Description
Readership: Students, researchers in physics, chemistry, engineering and mathematics, science writers and general readers.
Gaussian Self-Affinity and Fractals
Author: Benoit Mandelbrot
Publisher: Springer Science & Business Media
ISBN: 9780387989938
Category : Mathematics
Languages : en
Pages : 672
Book Description
This third volume of the Selected Works focusses on a detailed study of fraction Brownian motions. The fractal themes of "self-affinity" and "globality" are presented, while extensive introductory material, written especially for this book, precedes the papers and presents a number of striking new observations and conjectures. The mathematical tools so discussed will be valuable to diverse scientific communities.
Publisher: Springer Science & Business Media
ISBN: 9780387989938
Category : Mathematics
Languages : en
Pages : 672
Book Description
This third volume of the Selected Works focusses on a detailed study of fraction Brownian motions. The fractal themes of "self-affinity" and "globality" are presented, while extensive introductory material, written especially for this book, precedes the papers and presents a number of striking new observations and conjectures. The mathematical tools so discussed will be valuable to diverse scientific communities.
Fractals for the Classroom
Author: Heinz-Otto Peitgen
Publisher: Springer Science & Business Media
ISBN: 1475721722
Category : Mathematics
Languages : en
Pages : 468
Book Description
Fractals for the Classroom breaks new ground as it brings an exciting branch of mathematics into the classroom. The book is a collection of independent chapters on the major concepts related to the science and mathematics of fractals. Written at the mathematical level of an advanced secondary student, Fractals for the Classroom includes many fascinating insights for the classroom teacher and integrates illustrations from a wide variety of applications with an enjoyable text to help bring the concepts alive and make them understandable to the average reader. This book will have a tremendous impact upon teachers, students, and the mathematics education of the general public. With the forthcoming companion materials, including four books on strategic classroom activities and lessons with interactive computer software, this package will be unparalleled.
Publisher: Springer Science & Business Media
ISBN: 1475721722
Category : Mathematics
Languages : en
Pages : 468
Book Description
Fractals for the Classroom breaks new ground as it brings an exciting branch of mathematics into the classroom. The book is a collection of independent chapters on the major concepts related to the science and mathematics of fractals. Written at the mathematical level of an advanced secondary student, Fractals for the Classroom includes many fascinating insights for the classroom teacher and integrates illustrations from a wide variety of applications with an enjoyable text to help bring the concepts alive and make them understandable to the average reader. This book will have a tremendous impact upon teachers, students, and the mathematics education of the general public. With the forthcoming companion materials, including four books on strategic classroom activities and lessons with interactive computer software, this package will be unparalleled.
Fractals in Biology and Medicine
Author: Theo F. Nonnenmacher
Publisher: Birkhäuser
ISBN: 3034885016
Category : Science
Languages : en
Pages : 401
Book Description
"Fractals in Biology and Medicine" explores the potential of fractal geometry for describing and understanding biological organisms, their development and growth as well as their structural design and functional properties. It extends these notions to assess changes associated with disease in the hope to contribute to the understanding of pathogenetic processes in medicine. The book is the first comprehensive presentation of the importance of the new concept of fractal geometry for biological and medical sciences. It collates in a logical sequence extended papers based on invited lectures and free communications presented at a symposium in Ascona, Switzerland, attended by leading scientists in this field, among them the originator of fractal geometry, Benoit Mandelbrot. "Fractals in Biology and Medicine" begins by asking how the theoretical construct of fractal geometry can be applied to biomedical sciences and then addresses the role of fractals in the design and morphogenesis of biological organisms as well as in molecular and cell biology. The consideration of fractal structure in understanding metabolic functions and pathological changes is a particularly promising avenue for future research.
Publisher: Birkhäuser
ISBN: 3034885016
Category : Science
Languages : en
Pages : 401
Book Description
"Fractals in Biology and Medicine" explores the potential of fractal geometry for describing and understanding biological organisms, their development and growth as well as their structural design and functional properties. It extends these notions to assess changes associated with disease in the hope to contribute to the understanding of pathogenetic processes in medicine. The book is the first comprehensive presentation of the importance of the new concept of fractal geometry for biological and medical sciences. It collates in a logical sequence extended papers based on invited lectures and free communications presented at a symposium in Ascona, Switzerland, attended by leading scientists in this field, among them the originator of fractal geometry, Benoit Mandelbrot. "Fractals in Biology and Medicine" begins by asking how the theoretical construct of fractal geometry can be applied to biomedical sciences and then addresses the role of fractals in the design and morphogenesis of biological organisms as well as in molecular and cell biology. The consideration of fractal structure in understanding metabolic functions and pathological changes is a particularly promising avenue for future research.
Fractals and Scaling in Finance
Author: Benoit B. Mandelbrot
Publisher: Springer Science & Business Media
ISBN: 1475727631
Category : Mathematics
Languages : en
Pages : 558
Book Description
Mandelbrot is world famous for his creation of the new mathematics of fractal geometry. Yet few people know that his original field of applied research was in econometrics and financial models, applying ideas of scaling and self-similarity to arrays of data generated by financial analyses. This book brings together his original papers as well as many original chapters specifically written for this book.
Publisher: Springer Science & Business Media
ISBN: 1475727631
Category : Mathematics
Languages : en
Pages : 558
Book Description
Mandelbrot is world famous for his creation of the new mathematics of fractal geometry. Yet few people know that his original field of applied research was in econometrics and financial models, applying ideas of scaling and self-similarity to arrays of data generated by financial analyses. This book brings together his original papers as well as many original chapters specifically written for this book.
Applied Chaos Theory
Author: Ali Bulent Cambel
Publisher: Elsevier
ISBN: 0080571360
Category : Mathematics
Languages : en
Pages : 265
Book Description
This book differs from others on Chaos Theory in that it focuses on its applications for understanding complex phenomena. The emphasis is on the interpretation of the equations rather than on the details of the mathematical derivations. The presentation is interdisciplinary in its approach to real-life problems: it integrates nonlinear dynamics, nonequilibrium thermodynamics, information theory, and fractal geometry. An effort has been made to present the material ina reader-friendly manner, and examples are chosen from real life situations. Recent findings on the diagnostics and control of chaos are presented, and suggestions are made for setting up a simple laboratory. Included is a list of topics for further discussion that may serve not only for personal practice or homework, but also as themes for theses, dissertations, and research proposals. - Includes laboratory experiments Includes applications and case studies related to cell differentiation, EKGs, and immunology - Presents interdisciplinary applications of chaos theory to complex systems - Emphasizes the meaning of mathematical equations rather than their derivations - Features reader friendly presentation with many illustrations and interpretations - Deals with real life, dissipative systemsIntegrates mathematical theory throughout the text
Publisher: Elsevier
ISBN: 0080571360
Category : Mathematics
Languages : en
Pages : 265
Book Description
This book differs from others on Chaos Theory in that it focuses on its applications for understanding complex phenomena. The emphasis is on the interpretation of the equations rather than on the details of the mathematical derivations. The presentation is interdisciplinary in its approach to real-life problems: it integrates nonlinear dynamics, nonequilibrium thermodynamics, information theory, and fractal geometry. An effort has been made to present the material ina reader-friendly manner, and examples are chosen from real life situations. Recent findings on the diagnostics and control of chaos are presented, and suggestions are made for setting up a simple laboratory. Included is a list of topics for further discussion that may serve not only for personal practice or homework, but also as themes for theses, dissertations, and research proposals. - Includes laboratory experiments Includes applications and case studies related to cell differentiation, EKGs, and immunology - Presents interdisciplinary applications of chaos theory to complex systems - Emphasizes the meaning of mathematical equations rather than their derivations - Features reader friendly presentation with many illustrations and interpretations - Deals with real life, dissipative systemsIntegrates mathematical theory throughout the text
A Random Walk Through Fractal Dimensions
Author: Brian H. Kaye
Publisher: John Wiley & Sons
ISBN: 3527615989
Category : Technology & Engineering
Languages : en
Pages : 452
Book Description
Fractal geometry is revolutionizing the descriptive mathematics of applied materials systems. Rather than presenting a mathematical treatise, Brian Kaye demonstrates the power of fractal geometry in describing materials ranging from Swiss cheese to pyrolytic graphite. Written from a practical point of view, the author assiduously avoids the use of equations while introducing the reader to numerous interesting and challenging problems in subject areas ranging from geography to fine particle science. The second edition of this successful book provides up-to-date literature coverage of the use of fractal geometry in all areas of science. From reviews of the first edition: "...no stone is left unturned in the quest for applications of fractal geometry to fine particle problems....This book should provide hours of enjoyable reading to those wishing to become acquainted with the ideas of fractal geometry as applied to practical materials problems." MRS Bulletin
Publisher: John Wiley & Sons
ISBN: 3527615989
Category : Technology & Engineering
Languages : en
Pages : 452
Book Description
Fractal geometry is revolutionizing the descriptive mathematics of applied materials systems. Rather than presenting a mathematical treatise, Brian Kaye demonstrates the power of fractal geometry in describing materials ranging from Swiss cheese to pyrolytic graphite. Written from a practical point of view, the author assiduously avoids the use of equations while introducing the reader to numerous interesting and challenging problems in subject areas ranging from geography to fine particle science. The second edition of this successful book provides up-to-date literature coverage of the use of fractal geometry in all areas of science. From reviews of the first edition: "...no stone is left unturned in the quest for applications of fractal geometry to fine particle problems....This book should provide hours of enjoyable reading to those wishing to become acquainted with the ideas of fractal geometry as applied to practical materials problems." MRS Bulletin