Author: Jonathan T. H. Wu
Publisher: Transportation Research Board
ISBN: 0309098459
Category : Bridges
Languages : en
Pages : 152
Book Description
Introduction and research approach -- Findings -- Interpretation, appraisal, and applications -- Conclusions and suggested research -- Appendixes.
Design and Construction Guidelines for Geosynthetic-reinforced Soil Bridge Abutments with a Flexible Facing
Author: Jonathan T. H. Wu
Publisher: Transportation Research Board
ISBN: 0309098459
Category : Bridges
Languages : en
Pages : 152
Book Description
Introduction and research approach -- Findings -- Interpretation, appraisal, and applications -- Conclusions and suggested research -- Appendixes.
Publisher: Transportation Research Board
ISBN: 0309098459
Category : Bridges
Languages : en
Pages : 152
Book Description
Introduction and research approach -- Findings -- Interpretation, appraisal, and applications -- Conclusions and suggested research -- Appendixes.
Geosynthetic Reinforced Soil (GRS) Walls
Author: Jonathan T. H. Wu
Publisher: John Wiley & Sons
ISBN: 1119375843
Category : Technology & Engineering
Languages : en
Pages : 414
Book Description
The first book to provide a detailed overview of Geosynthetic Reinforced Soil Walls Geosynthetic Reinforced Soil (GRS) Walls deploy horizontal layers of closely spaced tensile inclusion in the fill material to achieve stability of a soil mass. GRS walls are more adaptable to different environmental conditions, more economical, and offer high performance in a wide range of transportation infrastructure applications. This book addresses both GRS and GMSE, with a much stronger emphasis on the former. For completeness, it begins with a review of shear strength of soils and classical earth pressure theories. It then goes on to examine the use of geosynthetics as reinforcement, and followed by the load-deformation behavior of GRS mass as a soil-geosynthetic composite, reinforcing mechanisms of GRS, and GRS walls with different types of facing. Finally, the book finishes by covering design concepts with design examples for different loading and geometric conditions, and the construction of GRS walls, including typical construction procedures and general construction guidelines. The number of GRS walls and abutments built to date is relatively low due to lack of understanding of GRS. While failure rate of GMSE has been estimated to be around 5%, failure of GRS has been found to be practically nil, with studies suggesting many advantages, including a smaller susceptibility to long-term creep and stronger resistance to seismic loads when well-compacted granular fill is employed. Geosynthetic Reinforced Soil (GRS) Walls will serve as an excellent guide or reference for wall projects such as transportation infrastructure—including roadways, bridges, retaining walls, and earth slopes—that are in dire need of repair and replacement in the U.S. and abroad. Covers both GRS and GMSE (MSE with geosynthetics as reinforcement); with much greater emphasis on GRS walls Showcases reinforcing mechanisms, engineering behavior, and design concepts of GRS and includes many step-by-step design examples Features information on typical construction procedures and general construction guidelines Includes hundreds of line drawings and photos Geosynthetic Reinforced Soil (GRS) Walls is an important book for practicing geotechnical engineers and structural engineers, as well as for advanced students of civil, structural, and geotechnical engineering.
Publisher: John Wiley & Sons
ISBN: 1119375843
Category : Technology & Engineering
Languages : en
Pages : 414
Book Description
The first book to provide a detailed overview of Geosynthetic Reinforced Soil Walls Geosynthetic Reinforced Soil (GRS) Walls deploy horizontal layers of closely spaced tensile inclusion in the fill material to achieve stability of a soil mass. GRS walls are more adaptable to different environmental conditions, more economical, and offer high performance in a wide range of transportation infrastructure applications. This book addresses both GRS and GMSE, with a much stronger emphasis on the former. For completeness, it begins with a review of shear strength of soils and classical earth pressure theories. It then goes on to examine the use of geosynthetics as reinforcement, and followed by the load-deformation behavior of GRS mass as a soil-geosynthetic composite, reinforcing mechanisms of GRS, and GRS walls with different types of facing. Finally, the book finishes by covering design concepts with design examples for different loading and geometric conditions, and the construction of GRS walls, including typical construction procedures and general construction guidelines. The number of GRS walls and abutments built to date is relatively low due to lack of understanding of GRS. While failure rate of GMSE has been estimated to be around 5%, failure of GRS has been found to be practically nil, with studies suggesting many advantages, including a smaller susceptibility to long-term creep and stronger resistance to seismic loads when well-compacted granular fill is employed. Geosynthetic Reinforced Soil (GRS) Walls will serve as an excellent guide or reference for wall projects such as transportation infrastructure—including roadways, bridges, retaining walls, and earth slopes—that are in dire need of repair and replacement in the U.S. and abroad. Covers both GRS and GMSE (MSE with geosynthetics as reinforcement); with much greater emphasis on GRS walls Showcases reinforcing mechanisms, engineering behavior, and design concepts of GRS and includes many step-by-step design examples Features information on typical construction procedures and general construction guidelines Includes hundreds of line drawings and photos Geosynthetic Reinforced Soil (GRS) Walls is an important book for practicing geotechnical engineers and structural engineers, as well as for advanced students of civil, structural, and geotechnical engineering.
Geosynthetic Reinforced Soil Integrated Bridge System, Synthesis Report
Author:
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 68
Book Description
"This report is the second in a two-part series to provide engineers with the necessary background knowledge of Geosynthetic Reinforced Soil (GRS) technology and its fundamental characteristics as an alternative to other construction methods. It supplements the interim implementation manual (FHWA-HRT-11-026), which outlines the design and construction of the GRS Integrated Bridge System (IBS). The research behind the proposed design method is presented along with case histories to show the performance of in-service GRS-IBS and GRS walls"--Technical report documentation page.
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 68
Book Description
"This report is the second in a two-part series to provide engineers with the necessary background knowledge of Geosynthetic Reinforced Soil (GRS) technology and its fundamental characteristics as an alternative to other construction methods. It supplements the interim implementation manual (FHWA-HRT-11-026), which outlines the design and construction of the GRS Integrated Bridge System (IBS). The research behind the proposed design method is presented along with case histories to show the performance of in-service GRS-IBS and GRS walls"--Technical report documentation page.
Geosynthetic Reinforced Soil for Low Volume Bridge Abutments
Author:
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 115
Book Description
Laboratory testing on aggregate fill with and without geosynthetic material showed improvements in shear strength parameters and permanent deformation behavior when reinforced with geosynthetic due to lateral restraint effect at the soil-geosynthetic interface. Bridge LL testing under static loads indicated maximum deflections close to 0.9 in and non-uniform deflections transversely across the bridge due to poor load transfer between RRFCs. The ratio of horizontal to vertical stresses in the GRS fill was lo3 (less than 0.25), indicating low lateral stress on the soil surrounding GRS fill material. Bearing capacity analysis at Bridge 2 indicated lower than recommended factor of safety (FS) values due to low ultimate reinforcement strength of the geosynthetic material used in this study and relatively weak underlying foundation layer.
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 115
Book Description
Laboratory testing on aggregate fill with and without geosynthetic material showed improvements in shear strength parameters and permanent deformation behavior when reinforced with geosynthetic due to lateral restraint effect at the soil-geosynthetic interface. Bridge LL testing under static loads indicated maximum deflections close to 0.9 in and non-uniform deflections transversely across the bridge due to poor load transfer between RRFCs. The ratio of horizontal to vertical stresses in the GRS fill was lo3 (less than 0.25), indicating low lateral stress on the soil surrounding GRS fill material. Bearing capacity analysis at Bridge 2 indicated lower than recommended factor of safety (FS) values due to low ultimate reinforcement strength of the geosynthetic material used in this study and relatively weak underlying foundation layer.
Eighth International Conference on Low-Volume Roads, 2003
Author:
Publisher:
ISBN:
Category : Low-volume roads
Languages : en
Pages : 436
Book Description
Publisher:
ISBN:
Category : Low-volume roads
Languages : en
Pages : 436
Book Description
Proceedings of the 5th International Conference on Transportation Geotechnics (ICTG) 2024, Volume 8
Author: Cholachat Rujikiatkamjorn
Publisher: Springer Nature
ISBN: 9819782414
Category :
Languages : en
Pages : 404
Book Description
Publisher: Springer Nature
ISBN: 9819782414
Category :
Languages : en
Pages : 404
Book Description
Development of Abutment Design Standards for Local Bridge Designs: Development of design methodology
Author:
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 102
Book Description
Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 102
Book Description
Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.
Challenges and Innovations in Geomechanics
Author: Marco Barla
Publisher: Springer Nature
ISBN: 3030645185
Category : Science
Languages : en
Pages : 1124
Book Description
This book gathers the latest advances, innovations, and applications in the field of computational geomechanics, as presented by international researchers and engineers at the 16th International Conference of the International Association for Computer Methods and Advances in Geomechanics (IACMAG 2020/21). Contributions include a wide range of topics in geomechanics such as: monitoring and remote sensing, multiphase modelling, reliability and risk analysis, surface structures, deep structures, dams and earth structures, coastal engineering, mining engineering, earthquake and dynamics, soil-atmosphere interaction, ice mechanics, landfills and waste disposal, gas and petroleum engineering, geothermal energy, offshore technology, energy geostructures, geomechanical numerical models and computational rail geotechnics.
Publisher: Springer Nature
ISBN: 3030645185
Category : Science
Languages : en
Pages : 1124
Book Description
This book gathers the latest advances, innovations, and applications in the field of computational geomechanics, as presented by international researchers and engineers at the 16th International Conference of the International Association for Computer Methods and Advances in Geomechanics (IACMAG 2020/21). Contributions include a wide range of topics in geomechanics such as: monitoring and remote sensing, multiphase modelling, reliability and risk analysis, surface structures, deep structures, dams and earth structures, coastal engineering, mining engineering, earthquake and dynamics, soil-atmosphere interaction, ice mechanics, landfills and waste disposal, gas and petroleum engineering, geothermal energy, offshore technology, energy geostructures, geomechanical numerical models and computational rail geotechnics.
Public Roads
Author:
Publisher:
ISBN:
Category : Highway research
Languages : en
Pages : 64
Book Description
Publisher:
ISBN:
Category : Highway research
Languages : en
Pages : 64
Book Description
Low-Volume Roads Engineering - Best Management Practices Field Guide
Author: Gordon Keller
Publisher:
ISBN: 9781998295333
Category :
Languages : en
Pages : 0
Book Description
This Low-Volume Roads Engineering Best Management Practices Field Guide is intended to provide an overview of the key planning, location, design, construction, and maintenance aspects of roads that can cause adverse environmental impacts and to list key ways to prevent those impacts. Best Management Practices are general techniques or design practices that, when applied and adapted to fit site-specific conditions, will prevent or reduce pollution and maintain water quality. BMPs for roads have been developed by many agencies since roads often have a major adverse impact on water quality, and most of those impacts are preventable with good engineering and management practices. Roads that are not well planned or located, not properly designed or constructed, not well maintained, or not made with durable materials often have negative effects on water quality and the environment.
Publisher:
ISBN: 9781998295333
Category :
Languages : en
Pages : 0
Book Description
This Low-Volume Roads Engineering Best Management Practices Field Guide is intended to provide an overview of the key planning, location, design, construction, and maintenance aspects of roads that can cause adverse environmental impacts and to list key ways to prevent those impacts. Best Management Practices are general techniques or design practices that, when applied and adapted to fit site-specific conditions, will prevent or reduce pollution and maintain water quality. BMPs for roads have been developed by many agencies since roads often have a major adverse impact on water quality, and most of those impacts are preventable with good engineering and management practices. Roads that are not well planned or located, not properly designed or constructed, not well maintained, or not made with durable materials often have negative effects on water quality and the environment.