Geometry, Rigidity, and Group Actions

Geometry, Rigidity, and Group Actions PDF Author: Robert J. Zimmer
Publisher: University of Chicago Press
ISBN: 0226237893
Category : Mathematics
Languages : en
Pages : 659

Get Book Here

Book Description
The study of group actions is more than 100 years old but remains a widely studied topic in a variety of mathematic fields. A central development in the last 50 years is the phenomenon of rigidity, whereby one can classify actions of certain groups. This book looks at rigidity.

Group Actions in Ergodic Theory, Geometry, and Topology

Group Actions in Ergodic Theory, Geometry, and Topology PDF Author: Robert J. Zimmer
Publisher: University of Chicago Press
ISBN: 022656827X
Category : Mathematics
Languages : en
Pages : 724

Get Book Here

Book Description
Robert J. Zimmer is best known in mathematics for the highly influential conjectures and program that bear his name. Group Actions in Ergodic Theory, Geometry, and Topology: Selected Papers brings together some of the most significant writings by Zimmer, which lay out his program and contextualize his work over the course of his career. Zimmer’s body of work is remarkable in that it involves methods from a variety of mathematical disciplines, such as Lie theory, differential geometry, ergodic theory and dynamical systems, arithmetic groups, and topology, and at the same time offers a unifying perspective. After arriving at the University of Chicago in 1977, Zimmer extended his earlier research on ergodic group actions to prove his cocycle superrigidity theorem which proved to be a pivotal point in articulating and developing his program. Zimmer’s ideas opened the door to many others, and they continue to be actively employed in many domains related to group actions in ergodic theory, geometry, and topology. In addition to the selected papers themselves, this volume opens with a foreword by David Fisher, Alexander Lubotzky, and Gregory Margulis, as well as a substantial introductory essay by Zimmer recounting the course of his career in mathematics. The volume closes with an afterword by Fisher on the most recent developments around the Zimmer program.

Group Actions in Ergodic Theory, Geometry, and Topology

Group Actions in Ergodic Theory, Geometry, and Topology PDF Author: Robert J. Zimmer
Publisher: University of Chicago Press
ISBN: 022656813X
Category : Mathematics
Languages : en
Pages : 724

Get Book Here

Book Description
Robert J. Zimmer is best known in mathematics for the highly influential conjectures and program that bear his name. Group Actions in Ergodic Theory, Geometry, and Topology: Selected Papers brings together some of the most significant writings by Zimmer, which lay out his program and contextualize his work over the course of his career. Zimmer’s body of work is remarkable in that it involves methods from a variety of mathematical disciplines, such as Lie theory, differential geometry, ergodic theory and dynamical systems, arithmetic groups, and topology, and at the same time offers a unifying perspective. After arriving at the University of Chicago in 1977, Zimmer extended his earlier research on ergodic group actions to prove his cocycle superrigidity theorem which proved to be a pivotal point in articulating and developing his program. Zimmer’s ideas opened the door to many others, and they continue to be actively employed in many domains related to group actions in ergodic theory, geometry, and topology. In addition to the selected papers themselves, this volume opens with a foreword by David Fisher, Alexander Lubotzky, and Gregory Margulis, as well as a substantial introductory essay by Zimmer recounting the course of his career in mathematics. The volume closes with an afterword by Fisher on the most recent developments around the Zimmer program.

Geometry, Rigidity, and Group Actions

Geometry, Rigidity, and Group Actions PDF Author: Benson Farb
Publisher: University of Chicago Press
ISBN: 0226237907
Category : Mathematics
Languages : en
Pages : 659

Get Book Here

Book Description
The study of group actions is more than a hundred years old but remains to this day a vibrant and widely studied topic in a variety of mathematic fields. A central development in the last fifty years is the phenomenon of rigidity, whereby one can classify actions of certain groups, such as lattices in semi-simple Lie groups. This provides a way to classify all possible symmetries of important spaces and all spaces admitting given symmetries. Paradigmatic results can be found in the seminal work of George Mostow, Gergory Margulis, and Robert J. Zimmer, among others. The papers in Geometry, Rigidity, and Group Actions explore the role of group actions and rigidity in several areas of mathematics, including ergodic theory, dynamics, geometry, topology, and the algebraic properties of representation varieties. In some cases, the dynamics of the possible group actions are the principal focus of inquiry. In other cases, the dynamics of group actions are a tool for proving theorems about algebra, geometry, or topology. This volume contains surveys of some of the main directions in the field, as well as research articles on topics of current interest.

Ergodic Theory, Groups, and Geometry

Ergodic Theory, Groups, and Geometry PDF Author: Robert J. Zimmer
Publisher: American Mathematical Soc.
ISBN: 0821883364
Category : Mathematics
Languages : en
Pages : 103

Get Book Here

Book Description
"The study of group actions on manifolds is the meeting ground of a variety of mathematical areas. In particular, interesting geometric insights can be obtained by applying measure-theoretic techniques. This book provides an introduction to some of the important methods, major developments, and open problems in the subject. It is slightly expanded from lectures given by Zimmer at the CBMS conference at the University of Minnesota. The main text presents a perspective on the field as it was at that time. Comments at the end of each chapter provide selected suggestions for further reading, including references to recent developments."--BOOK JACKET.

Geometric Group Theory

Geometric Group Theory PDF Author: Clara Löh
Publisher: Springer
ISBN: 3319722549
Category : Mathematics
Languages : en
Pages : 390

Get Book Here

Book Description
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.

Lectures on Formal and Rigid Geometry

Lectures on Formal and Rigid Geometry PDF Author: Siegfried Bosch
Publisher: Springer
ISBN: 3319044176
Category : Mathematics
Languages : en
Pages : 255

Get Book Here

Book Description
The aim of this work is to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work. This Lecture Notes Volume is a revised and slightly expanded version of a preprint that appeared in 2005 at the University of Münster's Collaborative Research Center "Geometrical Structures in Mathematics".

Topics in Galois Theory

Topics in Galois Theory PDF Author: Jean-Pierre Serre
Publisher: CRC Press
ISBN: 1439865256
Category : Mathematics
Languages : en
Pages : 120

Get Book Here

Book Description
This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt constructi

Infinite Group Actions on Polyhedra

Infinite Group Actions on Polyhedra PDF Author: MICHAEL W. DAVIS
Publisher: Springer Nature
ISBN: 3031484436
Category : Infinite groups
Languages : en
Pages : 273

Get Book Here

Book Description
In the past fifteen years, the theory of right-angled Artin groups and special cube complexes has emerged as a central topic in geometric group theory. This monograph provides an account of this theory, along with other modern techniques in geometric group theory. Structured around the theme of group actions on contractible polyhedra, this book explores two prominent methods for constructing such actions: utilizing the group of deck transformations of the universal cover of a nonpositively curved polyhedron and leveraging the theory of simple complexes of groups. The book presents various approaches to obtaining cubical examples through CAT(0) cube complexes, including the polyhedral product construction, hyperbolization procedures, and the Sageev construction. Moreover, it offers a unified presentation of important non-cubical examples, such as Coxeter groups, Artin groups, and groups that act on buildings. Designed as a resource for graduate students and researchers specializing in geometric group theory, this book should also be of high interest to mathematicians in related areas, such as 3-manifolds.

Dynamics, Geometry, Number Theory

Dynamics, Geometry, Number Theory PDF Author: David Fisher
Publisher: University of Chicago Press
ISBN: 022680416X
Category : Mathematics
Languages : en
Pages : 573

Get Book Here

Book Description
This definitive synthesis of mathematician Gregory Margulis’s research brings together leading experts to cover the breadth and diversity of disciplines Margulis’s work touches upon. This edited collection highlights the foundations and evolution of research by widely influential Fields Medalist Gregory Margulis. Margulis is unusual in the degree to which his solutions to particular problems have opened new vistas of mathematics; his ideas were central, for example, to developments that led to the recent Fields Medals of Elon Lindenstrauss and Maryam Mirzhakhani. Dynamics, Geometry, Number Theory introduces these areas, their development, their use in current research, and the connections between them. Divided into four broad sections—“Arithmeticity, Superrigidity, Normal Subgroups”; “Discrete Subgroups”; “Expanders, Representations, Spectral Theory”; and “Homogeneous Dynamics”—the chapters have all been written by the foremost experts on each topic with a view to making them accessible both to graduate students and to experts in other parts of mathematics. This was no simple feat: Margulis’s work stands out in part because of its depth, but also because it brings together ideas from different areas of mathematics. Few can be experts in all of these fields, and this diversity of ideas can make it challenging to enter Margulis’s area of research. Dynamics, Geometry, Number Theory provides one remedy to that challenge.