Author: Raymond W. Freese
Publisher: Nova Publishers
ISBN: 9781590330197
Category : Mathematics
Languages : en
Pages : 314
Book Description
Geometry of Linear 2-normed Spaces
Geometry of Spheres in Normed Spaces
Author: Juan Jorge Schäffer
Publisher:
ISBN: 9780608089836
Category :
Languages : en
Pages : 228
Book Description
Publisher:
ISBN: 9780608089836
Category :
Languages : en
Pages : 228
Book Description
Geometric Nonlinear Functional Analysis
Author: Yoav Benyamini
Publisher: American Mathematical Soc.
ISBN: 0821808354
Category : Mathematics
Languages : en
Pages : 503
Book Description
A systematic study of geometric nonlinear functional analysis. The main theme is the study of uniformly continuous and Lipschitz functions between Banach spaces. This study leads to the classification of Banach spaces and of their important subsets in the uniform and Lipschitz categories.
Publisher: American Mathematical Soc.
ISBN: 0821808354
Category : Mathematics
Languages : en
Pages : 503
Book Description
A systematic study of geometric nonlinear functional analysis. The main theme is the study of uniformly continuous and Lipschitz functions between Banach spaces. This study leads to the classification of Banach spaces and of their important subsets in the uniform and Lipschitz categories.
Handbook of Metric Fixed Point Theory
Author: W.A. Kirk
Publisher: Springer Science & Business Media
ISBN: 9401717486
Category : Mathematics
Languages : en
Pages : 702
Book Description
Metric fixed point theory encompasses the branch of fixed point theory which metric conditions on the underlying space and/or on the mappings play a fundamental role. In some sense the theory is a far-reaching outgrowth of Banach's contraction mapping principle. A natural extension of the study of contractions is the limiting case when the Lipschitz constant is allowed to equal one. Such mappings are called nonexpansive. Nonexpansive mappings arise in a variety of natural ways, for example in the study of holomorphic mappings and hyperconvex metric spaces. Because most of the spaces studied in analysis share many algebraic and topological properties as well as metric properties, there is no clear line separating metric fixed point theory from the topological or set-theoretic branch of the theory. Also, because of its metric underpinnings, metric fixed point theory has provided the motivation for the study of many geometric properties of Banach spaces. The contents of this Handbook reflect all of these facts. The purpose of the Handbook is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The goal is to provide information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers.
Publisher: Springer Science & Business Media
ISBN: 9401717486
Category : Mathematics
Languages : en
Pages : 702
Book Description
Metric fixed point theory encompasses the branch of fixed point theory which metric conditions on the underlying space and/or on the mappings play a fundamental role. In some sense the theory is a far-reaching outgrowth of Banach's contraction mapping principle. A natural extension of the study of contractions is the limiting case when the Lipschitz constant is allowed to equal one. Such mappings are called nonexpansive. Nonexpansive mappings arise in a variety of natural ways, for example in the study of holomorphic mappings and hyperconvex metric spaces. Because most of the spaces studied in analysis share many algebraic and topological properties as well as metric properties, there is no clear line separating metric fixed point theory from the topological or set-theoretic branch of the theory. Also, because of its metric underpinnings, metric fixed point theory has provided the motivation for the study of many geometric properties of Banach spaces. The contents of this Handbook reflect all of these facts. The purpose of the Handbook is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The goal is to provide information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers.
Handbook of Differential Geometry
Author: Franki J.E. Dillen
Publisher: Elsevier
ISBN: 0080461204
Category : Mathematics
Languages : en
Pages : 575
Book Description
In the series of volumes which together will constitute the "Handbook of Differential Geometry" we try to give a rather complete survey of the field of differential geometry. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent).All chapters are written by experts in the area and contain a large bibliography. In this second volume a wide range of areas in the very broad field of differential geometry is discussed, as there are Riemannian geometry, Lorentzian geometry, Finsler geometry, symplectic geometry, contact geometry, complex geometry, Lagrange geometry and the geometry of foliations. Although this does not cover the whole of differential geometry, the reader will be provided with an overview of some its most important areas.. Written by experts and covering recent research. Extensive bibliography. Dealing with a diverse range of areas. Starting from the basics
Publisher: Elsevier
ISBN: 0080461204
Category : Mathematics
Languages : en
Pages : 575
Book Description
In the series of volumes which together will constitute the "Handbook of Differential Geometry" we try to give a rather complete survey of the field of differential geometry. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent).All chapters are written by experts in the area and contain a large bibliography. In this second volume a wide range of areas in the very broad field of differential geometry is discussed, as there are Riemannian geometry, Lorentzian geometry, Finsler geometry, symplectic geometry, contact geometry, complex geometry, Lagrange geometry and the geometry of foliations. Although this does not cover the whole of differential geometry, the reader will be provided with an overview of some its most important areas.. Written by experts and covering recent research. Extensive bibliography. Dealing with a diverse range of areas. Starting from the basics
Handbook of the Geometry of Banach Spaces
Author:
Publisher: Elsevier
ISBN: 0080532802
Category : Mathematics
Languages : en
Pages : 1017
Book Description
The Handbook presents an overview of most aspects of modernBanach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banachspace theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Publisher: Elsevier
ISBN: 0080532802
Category : Mathematics
Languages : en
Pages : 1017
Book Description
The Handbook presents an overview of most aspects of modernBanach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banachspace theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Orthogonal Functions
Author: William Jones
Publisher: CRC Press
ISBN: 1000153673
Category : Mathematics
Languages : en
Pages : 442
Book Description
"Oulines an array of recent work on the analytic theory and potential applications of continued fractions, linear functionals, orthogonal functions, moment theory, and integral transforms. Describes links between continued fractions. Pade approximation, special functions, and Gaussian quadrature."
Publisher: CRC Press
ISBN: 1000153673
Category : Mathematics
Languages : en
Pages : 442
Book Description
"Oulines an array of recent work on the analytic theory and potential applications of continued fractions, linear functionals, orthogonal functions, moment theory, and integral transforms. Describes links between continued fractions. Pade approximation, special functions, and Gaussian quadrature."
Number Theory and Its Applications
Author: Cem Y. Yildrim
Publisher: CRC Press
ISBN: 1000673138
Category : Mathematics
Languages : en
Pages : 368
Book Description
This valuable reference addresses the methods leading to contemporary developments in number theory and coding theory, originally presented as lectures at a summer school held at Bilkent University, Ankara, Turkey.
Publisher: CRC Press
ISBN: 1000673138
Category : Mathematics
Languages : en
Pages : 368
Book Description
This valuable reference addresses the methods leading to contemporary developments in number theory and coding theory, originally presented as lectures at a summer school held at Bilkent University, Ankara, Turkey.
Shape Optimization And Optimal Design
Author: John Cagnol
Publisher: CRC Press
ISBN: 9780203904169
Category : Mathematics
Languages : en
Pages : 458
Book Description
This volume presents developments and advances in modelling passive and active control systems governed by partial differential equations. It emphasizes shape analysis, optimal shape design, controllability, nonlinear boundary control, and stabilization. The authors include essential data on exact boundary controllability of thermoelastic plates with variable transmission coefficients.
Publisher: CRC Press
ISBN: 9780203904169
Category : Mathematics
Languages : en
Pages : 458
Book Description
This volume presents developments and advances in modelling passive and active control systems governed by partial differential equations. It emphasizes shape analysis, optimal shape design, controllability, nonlinear boundary control, and stabilization. The authors include essential data on exact boundary controllability of thermoelastic plates with variable transmission coefficients.
Hyperbolic Differential Operators And Related Problems
Author: Vincenzo Ancona
Publisher: CRC Press
ISBN: 9780203911143
Category : Mathematics
Languages : en
Pages : 390
Book Description
Presenting research from more than 30 international authorities, this reference provides a complete arsenal of tools and theorems to analyze systems of hyperbolic partial differential equations. The authors investigate a wide variety of problems in areas such as thermodynamics, electromagnetics, fluid dynamics, differential geometry, and topology. Renewing thought in the field of mathematical physics, Hyperbolic Differential Operators defines the notion of pseudosymmetry for matrix symbols of order zero as well as the notion of time function. Surpassing previously published material on the topic, this text is key for researchers and mathematicians specializing in hyperbolic, Schrödinger, Einstein, and partial differential equations; complex analysis; and mathematical physics.
Publisher: CRC Press
ISBN: 9780203911143
Category : Mathematics
Languages : en
Pages : 390
Book Description
Presenting research from more than 30 international authorities, this reference provides a complete arsenal of tools and theorems to analyze systems of hyperbolic partial differential equations. The authors investigate a wide variety of problems in areas such as thermodynamics, electromagnetics, fluid dynamics, differential geometry, and topology. Renewing thought in the field of mathematical physics, Hyperbolic Differential Operators defines the notion of pseudosymmetry for matrix symbols of order zero as well as the notion of time function. Surpassing previously published material on the topic, this text is key for researchers and mathematicians specializing in hyperbolic, Schrödinger, Einstein, and partial differential equations; complex analysis; and mathematical physics.