Introduction to Möbius Differential Geometry

Introduction to Möbius Differential Geometry PDF Author: Udo Hertrich-Jeromin
Publisher: Cambridge University Press
ISBN: 9780521535694
Category : Mathematics
Languages : en
Pages : 436

Get Book Here

Book Description
This book introduces the reader to the geometry of surfaces and submanifolds in the conformal n-sphere.

Introduction to Möbius Differential Geometry

Introduction to Möbius Differential Geometry PDF Author: Udo Hertrich-Jeromin
Publisher: Cambridge University Press
ISBN: 9780521535694
Category : Mathematics
Languages : en
Pages : 436

Get Book Here

Book Description
This book introduces the reader to the geometry of surfaces and submanifolds in the conformal n-sphere.

Geometry with an Introduction to Cosmic Topology

Geometry with an Introduction to Cosmic Topology PDF Author: Michael P. Hitchman
Publisher: Jones & Bartlett Learning
ISBN: 0763754579
Category : Mathematics
Languages : en
Pages : 255

Get Book Here

Book Description
The content of Geometry with an Introduction to Cosmic Topology is motivated by questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have and edge? Is it infinitely big? Dr. Hitchman aims to clarify this fascinating area of mathematics. This non-Euclidean geometry text is organized intothree natural parts. Chapter 1 provides an overview including a brief history of Geometry, Surfaces, and reasons to study Non-Euclidean Geometry. Chapters 2-7 contain the core mathematical content of the text, following the ErlangenProgram, which develops geometry in terms of a space and a group of transformations on that space. Finally chapters 1 and 8 introduce (chapter 1) and explore (chapter 8) the topic of cosmic topology through the geometry learned in the preceding chapters.

The Geometry of Discrete Groups

The Geometry of Discrete Groups PDF Author: Alan F. Beardon
Publisher: Springer Science & Business Media
ISBN: 1461211468
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo metrical ideas to be found in that manuscript, as well as some more recent material. The text has been written with the conviction that geometrical explana tions are essential for a full understanding of the material and that however simple a matrix proof might seem, a geometric proof is almost certainly more profitable. Further, wherever possible, results should be stated in a form that is invariant under conjugation, thus making the intrinsic nature of the result more apparent. Despite the fact that the subject matter is concerned with groups of isometries of hyperbolic geometry, many publications rely on Euclidean estimates and geometry. However, the recent developments have again emphasized the need for hyperbolic geometry, and I have included a comprehensive chapter on analytical (not axiomatic) hyperbolic geometry. It is hoped that this chapter will serve as a "dictionary" offormulae in plane hyperbolic geometry and as such will be of interest and use in its own right.

Geometry of Complex Numbers

Geometry of Complex Numbers PDF Author: Hans Schwerdtfeger
Publisher: Courier Corporation
ISBN: 0486135861
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
Illuminating, widely praised book on analytic geometry of circles, the Moebius transformation, and 2-dimensional non-Euclidean geometries.

Computational Conformal Geometry

Computational Conformal Geometry PDF Author: Xianfeng David Gu
Publisher:
ISBN:
Category : CD-ROMs
Languages : en
Pages : 324

Get Book Here

Book Description


Indra's Pearls

Indra's Pearls PDF Author: David Mumford
Publisher: Cambridge University Press
ISBN: 9780521352536
Category : Computers
Languages : en
Pages : 422

Get Book Here

Book Description
Felix Klein, one of the great nineteenth-century geometers, rediscovered in mathematics an idea from Eastern philosophy: the heaven of Indra contained a net of pearls, each of which was reflected in its neighbour, so that the whole Universe was mirrored in each pearl. Klein studied infinitely repeated reflections and was led to forms with multiple co-existing symmetries. For a century these ideas barely existed outside the imagination of mathematicians. However in the 1980s the authors embarked on the first computer exploration of Klein's vision, and in doing so found many further extraordinary images. Join the authors on the path from basic mathematical ideas to the simple algorithms that create the delicate fractal filigrees, most of which have never appeared in print before. Beginners can follow the step-by-step instructions for writing programs that generate the images. Others can see how the images relate to ideas at the forefront of research.

Hyperbolic Geometry

Hyperbolic Geometry PDF Author: James W. Anderson
Publisher: Springer Science & Business Media
ISBN: 1447139879
Category : Mathematics
Languages : en
Pages : 239

Get Book Here

Book Description
Thoroughly updated, featuring new material on important topics such as hyperbolic geometry in higher dimensions and generalizations of hyperbolicity Includes full solutions for all exercises Successful first edition sold over 800 copies in North America

The Four Pillars of Geometry

The Four Pillars of Geometry PDF Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 0387255303
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises

Transformation Groups in Differential Geometry

Transformation Groups in Differential Geometry PDF Author: Shoshichi Kobayashi
Publisher: Springer Science & Business Media
ISBN: 3642619819
Category : Mathematics
Languages : en
Pages : 192

Get Book Here

Book Description
Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965.

Visual Complex Analysis

Visual Complex Analysis PDF Author: Tristan Needham
Publisher: Oxford University Press
ISBN: 9780198534464
Category : Mathematics
Languages : en
Pages : 620

Get Book Here

Book Description
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.