Author: Zhexian Wan
Publisher: World Scientific
ISBN: 9789810226381
Category : Mathematics
Languages : en
Pages : 396
Book Description
The present monograph is a state-of-art survey of the geometry of matrices whose study was initiated by L K Hua in the forties. The geometry of rectangular matrices, of alternate matrices, of symmetric matrices, and of hermitian matrices over a division ring or a field are studied in detail. The author's recent results on geometry of symmetric matrices and of hermitian matrices are included. A chapter on linear algebra over a division ring and one on affine and projective geometry over a division ring are also included. The book is clearly written so that graduate students and third or fourth year undergraduate students in mathematics can read it without difficulty.
Geometry of Matrices
Author: Zhexian Wan
Publisher: World Scientific
ISBN: 9789810226381
Category : Mathematics
Languages : en
Pages : 396
Book Description
The present monograph is a state-of-art survey of the geometry of matrices whose study was initiated by L K Hua in the forties. The geometry of rectangular matrices, of alternate matrices, of symmetric matrices, and of hermitian matrices over a division ring or a field are studied in detail. The author's recent results on geometry of symmetric matrices and of hermitian matrices are included. A chapter on linear algebra over a division ring and one on affine and projective geometry over a division ring are also included. The book is clearly written so that graduate students and third or fourth year undergraduate students in mathematics can read it without difficulty.
Publisher: World Scientific
ISBN: 9789810226381
Category : Mathematics
Languages : en
Pages : 396
Book Description
The present monograph is a state-of-art survey of the geometry of matrices whose study was initiated by L K Hua in the forties. The geometry of rectangular matrices, of alternate matrices, of symmetric matrices, and of hermitian matrices over a division ring or a field are studied in detail. The author's recent results on geometry of symmetric matrices and of hermitian matrices are included. A chapter on linear algebra over a division ring and one on affine and projective geometry over a division ring are also included. The book is clearly written so that graduate students and third or fourth year undergraduate students in mathematics can read it without difficulty.
Matrices and Graphs in Geometry
Author: Miroslav Fiedler
Publisher: Cambridge University Press
ISBN: 0521461936
Category : Mathematics
Languages : en
Pages : 206
Book Description
Demonstrates the close relationship between matrix theory and elementary Euclidean geometry, with emphasis on using simple graph-theoretical notions.
Publisher: Cambridge University Press
ISBN: 0521461936
Category : Mathematics
Languages : en
Pages : 206
Book Description
Demonstrates the close relationship between matrix theory and elementary Euclidean geometry, with emphasis on using simple graph-theoretical notions.
Analytic Geometry with an Introduction to Vectors and Matrices
Author: David Carruthers Murdoch
Publisher: New York : J. Wiley & Sons
ISBN:
Category : Geometry, Analytic
Languages : en
Pages : 320
Book Description
Publisher: New York : J. Wiley & Sons
ISBN:
Category : Geometry, Analytic
Languages : en
Pages : 320
Book Description
A Mathematical Primer for Social Statistics
Author: John Fox
Publisher: SAGE Publications
ISBN: 1071833243
Category : Social Science
Languages : en
Pages : 198
Book Description
A Mathematical Primer for Social Statistics, Second Edition presents mathematics central to learning and understanding statistical methods beyond the introductory level: the basic "language" of matrices and linear algebra and its visual representation, vector geometry; differential and integral calculus; probability theory; common probability distributions; statistical estimation and inference, including likelihood-based and Bayesian methods. The volume concludes by applying mathematical concepts and operations to a familiar case, linear least-squares regression. The Second Edition pays more attention to visualization, including the elliptical geometry of quadratic forms and its application to statistics. It also covers some new topics, such as an introduction to Markov-Chain Monte Carlo methods, which are important in modern Bayesian statistics. A companion website includes materials that enable readers to use the R statistical computing environment to reproduce and explore computations and visualizations presented in the text. The book is an excellent companion to a "math camp" or a course designed to provide foundational mathematics needed to understand relatively advanced statistical methods.
Publisher: SAGE Publications
ISBN: 1071833243
Category : Social Science
Languages : en
Pages : 198
Book Description
A Mathematical Primer for Social Statistics, Second Edition presents mathematics central to learning and understanding statistical methods beyond the introductory level: the basic "language" of matrices and linear algebra and its visual representation, vector geometry; differential and integral calculus; probability theory; common probability distributions; statistical estimation and inference, including likelihood-based and Bayesian methods. The volume concludes by applying mathematical concepts and operations to a familiar case, linear least-squares regression. The Second Edition pays more attention to visualization, including the elliptical geometry of quadratic forms and its application to statistics. It also covers some new topics, such as an introduction to Markov-Chain Monte Carlo methods, which are important in modern Bayesian statistics. A companion website includes materials that enable readers to use the R statistical computing environment to reproduce and explore computations and visualizations presented in the text. The book is an excellent companion to a "math camp" or a course designed to provide foundational mathematics needed to understand relatively advanced statistical methods.
Linear Algebra and Geometry
Author: Igor R. Shafarevich
Publisher: Springer Science & Business Media
ISBN: 3642309941
Category : Mathematics
Languages : en
Pages : 536
Book Description
This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.
Publisher: Springer Science & Business Media
ISBN: 3642309941
Category : Mathematics
Languages : en
Pages : 536
Book Description
This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.
Linear Algebra Through Geometry
Author: Thomas Banchoff
Publisher: Springer Science & Business Media
ISBN: 1461243904
Category : Mathematics
Languages : en
Pages : 316
Book Description
This book introduces the concepts of linear algebra through the careful study of two and three-dimensional Euclidean geometry. This approach makes it possible to start with vectors, linear transformations, and matrices in the context of familiar plane geometry and to move directly to topics such as dot products, determinants, eigenvalues, and quadratic forms. The later chapters deal with n-dimensional Euclidean space and other finite-dimensional vector space.
Publisher: Springer Science & Business Media
ISBN: 1461243904
Category : Mathematics
Languages : en
Pages : 316
Book Description
This book introduces the concepts of linear algebra through the careful study of two and three-dimensional Euclidean geometry. This approach makes it possible to start with vectors, linear transformations, and matrices in the context of familiar plane geometry and to move directly to topics such as dot products, determinants, eigenvalues, and quadratic forms. The later chapters deal with n-dimensional Euclidean space and other finite-dimensional vector space.
Matrices and Transformations
Author: Anthony J. Pettofrezzo
Publisher: Courier Corporation
ISBN: 0486151808
Category : Mathematics
Languages : en
Pages : 146
Book Description
This book presents an elementary and concrete approach to linear algebra that is both useful and essential for the beginning student and teacher of mathematics. Here are the fundamental concepts of matrix algebra, first in an intuitive framework and then in a more formal manner. A Variety of interpretations and applications of the elements and operations considered are included. In particular, the use of matrices in the study of transformations of the plane is stressed. The purpose of this book is to familiarize the reader with the role of matrices in abstract algebraic systems, and to illustrate its effective use as a mathematical tool in geometry. The first two chapters cover the basic concepts of matrix algebra that are important in the study of physics, statistics, economics, engineering, and mathematics. Matrices are considered as elements of an algebra. The concept of a linear transformation of the plane and the use of matrices in discussing such transformations are illustrated in Chapter #. Some aspects of the algebra of transformations and its relation to the algebra of matrices are included here. The last chapter on eigenvalues and eigenvectors contains material usually not found in an introductory treatment of matrix algebra, including an application of the properties of eigenvalues and eigenvectors to the study of the conics. Considerable attention has been paid throughout to the formulation of precise definitions and statements of theorems. The proofs of most of the theorems are included in detail in this book. Matrices and Transformations assumes only that the reader has some understanding of the basic fundamentals of vector algebra. Pettofrezzo gives numerous illustrative examples, practical applications, and intuitive analogies. There are many instructive exercises with answers to the odd-numbered questions at the back. The exercises range from routine computations to proofs of theorems that extend the theory of the subject. Originally written for a series concerned with the mathematical training of teachers, and tested with hundreds of college students, this book can be used as a class or supplementary text for enrichments programs at the high school level, a one-semester college course, individual study, or for in-service programs.
Publisher: Courier Corporation
ISBN: 0486151808
Category : Mathematics
Languages : en
Pages : 146
Book Description
This book presents an elementary and concrete approach to linear algebra that is both useful and essential for the beginning student and teacher of mathematics. Here are the fundamental concepts of matrix algebra, first in an intuitive framework and then in a more formal manner. A Variety of interpretations and applications of the elements and operations considered are included. In particular, the use of matrices in the study of transformations of the plane is stressed. The purpose of this book is to familiarize the reader with the role of matrices in abstract algebraic systems, and to illustrate its effective use as a mathematical tool in geometry. The first two chapters cover the basic concepts of matrix algebra that are important in the study of physics, statistics, economics, engineering, and mathematics. Matrices are considered as elements of an algebra. The concept of a linear transformation of the plane and the use of matrices in discussing such transformations are illustrated in Chapter #. Some aspects of the algebra of transformations and its relation to the algebra of matrices are included here. The last chapter on eigenvalues and eigenvectors contains material usually not found in an introductory treatment of matrix algebra, including an application of the properties of eigenvalues and eigenvectors to the study of the conics. Considerable attention has been paid throughout to the formulation of precise definitions and statements of theorems. The proofs of most of the theorems are included in detail in this book. Matrices and Transformations assumes only that the reader has some understanding of the basic fundamentals of vector algebra. Pettofrezzo gives numerous illustrative examples, practical applications, and intuitive analogies. There are many instructive exercises with answers to the odd-numbered questions at the back. The exercises range from routine computations to proofs of theorems that extend the theory of the subject. Originally written for a series concerned with the mathematical training of teachers, and tested with hundreds of college students, this book can be used as a class or supplementary text for enrichments programs at the high school level, a one-semester college course, individual study, or for in-service programs.
Vectors and Matrices for Geometric and 3D Modeling
Author: Michael Mortenson
Publisher: Industrial Press
ISBN: 9780831136550
Category : Technology & Engineering
Languages : en
Pages : 350
Book Description
Publisher: Industrial Press
ISBN: 9780831136550
Category : Technology & Engineering
Languages : en
Pages : 350
Book Description
Matrices and Linear Algebra
Author: Hans Schneider
Publisher: Courier Corporation
ISBN: 0486139301
Category : Mathematics
Languages : en
Pages : 430
Book Description
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it. This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related topics such as determinants, eigenvalues, and differential equations. Table of Contents: l. The Algebra of Matrices 2. Linear Equations 3. Vector Spaces 4. Determinants 5. Linear Transformations 6. Eigenvalues and Eigenvectors 7. Inner Product Spaces 8. Applications to Differential Equations For the second edition, the authors added several exercises in each chapter and a brand new section in Chapter 7. The exercises, which are both true-false and multiple-choice, will enable the student to test his grasp of the definitions and theorems in the chapter. The new section in Chapter 7 illustrates the geometric content of Sylvester's Theorem by means of conic sections and quadric surfaces. 6 line drawings. lndex. Two prefaces. Answer section.
Publisher: Courier Corporation
ISBN: 0486139301
Category : Mathematics
Languages : en
Pages : 430
Book Description
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it. This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related topics such as determinants, eigenvalues, and differential equations. Table of Contents: l. The Algebra of Matrices 2. Linear Equations 3. Vector Spaces 4. Determinants 5. Linear Transformations 6. Eigenvalues and Eigenvectors 7. Inner Product Spaces 8. Applications to Differential Equations For the second edition, the authors added several exercises in each chapter and a brand new section in Chapter 7. The exercises, which are both true-false and multiple-choice, will enable the student to test his grasp of the definitions and theorems in the chapter. The new section in Chapter 7 illustrates the geometric content of Sylvester's Theorem by means of conic sections and quadric surfaces. 6 line drawings. lndex. Two prefaces. Answer section.
Matrices and Linear Transformations
Author: Charles G. Cullen
Publisher: Courier Corporation
ISBN: 0486132412
Category : Mathematics
Languages : en
Pages : 338
Book Description
Undergraduate-level introduction to linear algebra and matrix theory. Explores matrices and linear systems, vector spaces, determinants, spectral decomposition, Jordan canonical form, much more. Over 375 problems. Selected answers. 1972 edition.
Publisher: Courier Corporation
ISBN: 0486132412
Category : Mathematics
Languages : en
Pages : 338
Book Description
Undergraduate-level introduction to linear algebra and matrix theory. Explores matrices and linear systems, vector spaces, determinants, spectral decomposition, Jordan canonical form, much more. Over 375 problems. Selected answers. 1972 edition.