Author: Yu.D. Burago
Publisher: Springer Science & Business Media
ISBN: 3662027518
Category : Mathematics
Languages : en
Pages : 263
Book Description
A volume devoted to the extremely clear and intrinsically beautiful theory of two-dimensional surfaces in Euclidean spaces. The main focus is on the connection between the theory of embedded surfaces and two-dimensional Riemannian geometry, and the influence of properties of intrinsic metrics on the geometry of surfaces.
Geometry III
Aspects of Differential Geometry III
Author: Esteban Calviño-Louzao
Publisher: Springer Nature
ISBN: 3031024109
Category : Mathematics
Languages : en
Pages : 145
Book Description
Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. Book III is aimed at the first-year graduate level but is certainly accessible to advanced undergraduates. It deals with invariance theory and discusses invariants both of Weyl and not of Weyl type; the Chern‒Gauss‒Bonnet formula is treated from this point of view. Homothety homogeneity, local homogeneity, stability theorems, and Walker geometry are discussed. Ricci solitons are presented in the contexts of Riemannian, Lorentzian, and affine geometry.
Publisher: Springer Nature
ISBN: 3031024109
Category : Mathematics
Languages : en
Pages : 145
Book Description
Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. Book III is aimed at the first-year graduate level but is certainly accessible to advanced undergraduates. It deals with invariance theory and discusses invariants both of Weyl and not of Weyl type; the Chern‒Gauss‒Bonnet formula is treated from this point of view. Homothety homogeneity, local homogeneity, stability theorems, and Walker geometry are discussed. Ricci solitons are presented in the contexts of Riemannian, Lorentzian, and affine geometry.
Fundamentals of Diophantine Geometry
Author: S. Lang
Publisher: Springer Science & Business Media
ISBN: 1475718101
Category : Mathematics
Languages : en
Pages : 383
Book Description
Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.
Publisher: Springer Science & Business Media
ISBN: 1475718101
Category : Mathematics
Languages : en
Pages : 383
Book Description
Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.
Foliations and the Geometry of 3-Manifolds
Author: Danny Calegari
Publisher: Oxford University Press on Demand
ISBN: 0198570082
Category : Mathematics
Languages : en
Pages : 378
Book Description
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Publisher: Oxford University Press on Demand
ISBN: 0198570082
Category : Mathematics
Languages : en
Pages : 378
Book Description
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Algebraic Geometry: Further study of schemes
Author: 健爾·上野
Publisher: American Mathematical Soc.
ISBN: 9780821813584
Category : Mathematics
Languages : en
Pages : 222
Book Description
This is the third part of the textbook on algebraic geometry by Kenji Ueno (the first two parts were published by the AMS as Volumes 185 and 197 of this series). Here the author presents the theory of schemes and sheaves beyond introductory notions, with the goal of studying properties of schemes and coherent sheaves necessary for full development of modern algebraic geometry. The main topics discussed in the book include dimension theory, flat and proper morphisms, regular schemes, smooth morphisms, completion and Zariski's main theorem. The author also presents the theory of algebraic curves and their Jacobians and the relation between algebraic and analytic geometry, including Kodaira's Vanishing Theorem. The book contains numerous exercises and problems with solutions, which makes it (together with two previous parts) appropriate for a graduate course on algebraic geometry or for self-study.
Publisher: American Mathematical Soc.
ISBN: 9780821813584
Category : Mathematics
Languages : en
Pages : 222
Book Description
This is the third part of the textbook on algebraic geometry by Kenji Ueno (the first two parts were published by the AMS as Volumes 185 and 197 of this series). Here the author presents the theory of schemes and sheaves beyond introductory notions, with the goal of studying properties of schemes and coherent sheaves necessary for full development of modern algebraic geometry. The main topics discussed in the book include dimension theory, flat and proper morphisms, regular schemes, smooth morphisms, completion and Zariski's main theorem. The author also presents the theory of algebraic curves and their Jacobians and the relation between algebraic and analytic geometry, including Kodaira's Vanishing Theorem. The book contains numerous exercises and problems with solutions, which makes it (together with two previous parts) appropriate for a graduate course on algebraic geometry or for self-study.
Modern Geometry— Methods and Applications
Author: B.A. Dubrovin
Publisher: Springer Science & Business Media
ISBN: 0387961623
Category : Mathematics
Languages : en
Pages : 452
Book Description
Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e.
Publisher: Springer Science & Business Media
ISBN: 0387961623
Category : Mathematics
Languages : en
Pages : 452
Book Description
Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e.
Catalogue
Author: Baylor University
Publisher:
ISBN:
Category :
Languages : en
Pages : 494
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 494
Book Description
Lie Groups and Lie Algebras III
Author: A.L. Onishchik
Publisher: Springer Science & Business Media
ISBN: 9783540546832
Category : Mathematics
Languages : en
Pages : 264
Book Description
A comprehensive and modern account of the structure and classification of Lie groups and finite-dimensional Lie algebras, by internationally known specialists in the field. This Encyclopaedia volume will be immensely useful to graduate students in differential geometry, algebra and theoretical physics.
Publisher: Springer Science & Business Media
ISBN: 9783540546832
Category : Mathematics
Languages : en
Pages : 264
Book Description
A comprehensive and modern account of the structure and classification of Lie groups and finite-dimensional Lie algebras, by internationally known specialists in the field. This Encyclopaedia volume will be immensely useful to graduate students in differential geometry, algebra and theoretical physics.
Subject Offerings and Enrollments, Grades 9-12
Author: Diane Bochner Gertler
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 190
Book Description
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 190
Book Description
Subject Offerings and Enrollments
Author: United States. Education Office
Publisher:
ISBN:
Category :
Languages : en
Pages : 188
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 188
Book Description