Geometric Theory of Semilinear Parabolic Equations

Geometric Theory of Semilinear Parabolic Equations PDF Author: Daniel Henry
Publisher: Springer
ISBN: 3540385282
Category : Mathematics
Languages : en
Pages : 353

Get Book Here

Book Description

Geometric Theory of Semilinear Parabolic Equations

Geometric Theory of Semilinear Parabolic Equations PDF Author: Daniel Henry
Publisher: Springer
ISBN: 3540385282
Category : Mathematics
Languages : en
Pages : 353

Get Book Here

Book Description


Geometric Theory of Semilinear Parabolic Equations

Geometric Theory of Semilinear Parabolic Equations PDF Author: Dan Henry
Publisher:
ISBN:
Category : Differential equations, Parabolic
Languages : en
Pages : 392

Get Book Here

Book Description


From Finite to Infinite Dimensional Dynamical Systems

From Finite to Infinite Dimensional Dynamical Systems PDF Author: James Robinson
Publisher: Springer Science & Business Media
ISBN: 9780792369769
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 21 August-1 September 1995

Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics

Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics PDF Author: Tian Ma
Publisher: American Mathematical Soc.
ISBN: 0821836935
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description
This monograph presents a geometric theory for incompressible flow and its applications to fluid dynamics. The main objective is to study the stability and transitions of the structure of incompressible flows and its applications to fluid dynamics and geophysical fluid dynamics. The development of the theory and its applications goes well beyond its original motivation of the study of oceanic dynamics. The authors present a substantial advance in the use of geometric and topological methods to analyze and classify incompressible fluid flows. The approach introduces genuinely innovative ideas to the study of the partial differential equations of fluid dynamics. One particularly useful development is a rigorous theory for boundary layer separation of incompressible fluids. The study of incompressible flows has two major interconnected parts. The first is the development of a global geometric theory of divergence-free fields on general two-dimensional compact manifolds. The second is the study of the structure of velocity fields for two-dimensional incompressible fluid flows governed by the Navier-Stokes equations or the Euler equations. Motivated by the study of problems in geophysical fluid dynamics, the program of research in this book seeks to develop a new mathematical theory, maintaining close links to physics along the way. In return, the theory is applied to physical problems, with more problems yet to be explored. The material is suitable for researchers and advanced graduate students interested in nonlinear PDEs and fluid dynamics.

Blow-Up in Quasilinear Parabolic Equations

Blow-Up in Quasilinear Parabolic Equations PDF Author: A. A. Samarskii
Publisher: Walter de Gruyter
ISBN: 3110889862
Category : Mathematics
Languages : en
Pages : 561

Get Book Here

Book Description
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)

Realization of Vector Fields and Dynamics of Spatially Homogeneous Parabolic Equations

Realization of Vector Fields and Dynamics of Spatially Homogeneous Parabolic Equations PDF Author: Edward Norman Dancer
Publisher: American Mathematical Soc.
ISBN: 0821811827
Category : Mathematics
Languages : en
Pages : 97

Get Book Here

Book Description
This book is intended for graduate students and research mathematicians working in partial differential equations.

semigroup theory and applications

semigroup theory and applications PDF Author: Phillipe Clement
Publisher: CRC Press
ISBN: 1000111121
Category : Mathematics
Languages : en
Pages : 473

Get Book Here

Book Description
This book contains articles on maximal regulatory problems, interpolation spaces, multiplicative perturbations of generators, linear and nonlinear evolution equations, integrodifferential equations, dual semigroups, positive semigroups, applications to control theory, and boundary value problems.

Mean Field Theories and Dual Variation - Mathematical Structures of the Mesoscopic Model

Mean Field Theories and Dual Variation - Mathematical Structures of the Mesoscopic Model PDF Author: Takashi Suzuki
Publisher: Springer
ISBN: 9462391548
Category : Mathematics
Languages : en
Pages : 450

Get Book Here

Book Description
Mean field approximation has been adopted to describe macroscopic phenomena from microscopic overviews. It is still in progress; fluid mechanics, gauge theory, plasma physics, quantum chemistry, mathematical oncology, non-equilibirum thermodynamics. spite of such a wide range of scientific areas that are concerned with the mean field theory, a unified study of its mathematical structure has not been discussed explicitly in the open literature. The benefit of this point of view on nonlinear problems should have significant impact on future research, as will be seen from the underlying features of self-assembly or bottom-up self-organization which is to be illustrated in a unified way. The aim of this book is to formulate the variational and hierarchical aspects of the equations that arise in the mean field theory from macroscopic profiles to microscopic principles, from dynamics to equilibrium, and from biological models to models that arise from chemistry and physics.

Stochastic Equations in Infinite Dimensions

Stochastic Equations in Infinite Dimensions PDF Author: Giuseppe Da Prato
Publisher: Cambridge University Press
ISBN: 1139917153
Category : Mathematics
Languages : en
Pages : 513

Get Book Here

Book Description
Now in its second edition, this book gives a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. In the first part the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. This revised edition includes two brand new chapters surveying recent developments in the area and an even more comprehensive bibliography, making this book an essential and up-to-date resource for all those working in stochastic differential equations.

Fundamentals of Dynamical Systems and Bifurcation Theory

Fundamentals of Dynamical Systems and Bifurcation Theory PDF Author: Milan Medved̕
Publisher: CRC Press
ISBN: 9780750301503
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
This graduate level text explains the fundamentals of the theory of dynamical systems. After reading it you will have a good enough understanding of the area to study the extensive literature on dynamical systems. The book is self contained, as all the essential definitions and proofs are supplied, as are useful references: all the reader needs is a knowledge of basic mathematical analysis, algebra and topology. However, the first chapter contains an explanation of some of the methods of differential topology an understanding of which is essential to the theory of dynamical systems. A clear introduction to the field, which is equally useful for postgraduates in the natural sciences, engineering and economics.