Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications

Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications PDF Author: Victor A. Galaktionov
Publisher: CRC Press
ISBN: 0203998065
Category : Mathematics
Languages : en
Pages : 383

Get Book Here

Book Description
Unlike the classical Sturm theorems on the zeros of solutions of second-order ODEs, Sturm's evolution zero set analysis for parabolic PDEs did not attract much attention in the 19th century, and, in fact, it was lost or forgotten for almost a century. Briefly revived by Plya in the 1930's and rediscovered in part several times since, it was not un

Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications

Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications PDF Author: Victor A. Galaktionov
Publisher: CRC Press
ISBN: 0203998065
Category : Mathematics
Languages : en
Pages : 383

Get Book Here

Book Description
Unlike the classical Sturm theorems on the zeros of solutions of second-order ODEs, Sturm's evolution zero set analysis for parabolic PDEs did not attract much attention in the 19th century, and, in fact, it was lost or forgotten for almost a century. Briefly revived by Plya in the 1930's and rediscovered in part several times since, it was not un

Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications

Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications PDF Author: Victor A. Galaktionov
Publisher: CRC Press
ISBN: 1135436266
Category : Mathematics
Languages : en
Pages : 383

Get Book Here

Book Description
Unlike the classical Sturm theorems on the zeros of solutions of second-order ODEs, Sturm's evolution zero set analysis for parabolic PDEs did not attract much attention in the 19th century, and, in fact, it was lost or forgotten for almost a century. Briefly revived by Pólya in the 1930's and rediscovered in part several times since, it was not until the 1980's that the Sturmian argument for PDEs began to penetrate into the theory of parabolic equations and was found to have several fundamental applications. Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications focuses on geometric aspects of the intersection comparison for nonlinear models creating finite-time singularities. After introducing the original Sturm zero set results for linear parabolic equations and the basic concepts of geometric analysis, the author presents the main concepts and regularity results of the geometric intersection theory (G-theory). Here he considers the general singular equation and presents the geometric notions related to the regularity and interface propagation of solutions. In the general setting, the author describes the main aspects of the ODE-PDE duality, proves existence and nonexistence theorems, establishes uniqueness and optimal Bernstein-type estimates, and derives interface equations, including higher-order equations. The final two chapters explore some special aspects of discontinuous and continuous limit semigroups generated by singular parabolic equations. Much of the information presented here has never before been published in book form. Readable and self-contained, this book forms a unique and outstanding reference on second-order parabolic PDEs used as models for a wide range of physical problems.

Sturm-Liouville Theory

Sturm-Liouville Theory PDF Author: Werner O. Amrein
Publisher: Springer Science & Business Media
ISBN: 9783764370664
Category : Mathematics
Languages : en
Pages : 364

Get Book Here

Book Description
This is a collection of survey articles based on lectures presented at a colloquium and workshop in Geneva in 2003 to commemorate the 200th anniversary of the birth of Charles François Sturm. It aims at giving an overview of the development of Sturm-Liouville theory from its historical roots to present day research. It is the first time that such a comprehensive survey has been made available in compact form. The contributions come from internationally renowned experts and cover a wide range of developments of the theory. The book can therefore serve both as an introduction to Sturm-Liouville theory and as background for ongoing research. The volume is addressed to researchers in related areas, to advanced students and to those interested in the historical development of mathematics. The book will also be of interest to those involved in applications of the theory to diverse areas such as engineering, fluid dynamics and computational spectral analysis.

A Stability Technique for Evolution Partial Differential Equations

A Stability Technique for Evolution Partial Differential Equations PDF Author: Victor A. Galaktionov
Publisher: Springer Science & Business Media
ISBN: 1461220505
Category : Mathematics
Languages : en
Pages : 388

Get Book Here

Book Description
* Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations. * Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs. * Well-organized text with detailed index and bibliography, suitable as a course text or reference volume.

Nonlinear Second Order Parabolic Equations

Nonlinear Second Order Parabolic Equations PDF Author: Mingxin Wang
Publisher: CRC Press
ISBN: 1000353915
Category : Mathematics
Languages : en
Pages : 299

Get Book Here

Book Description
The parabolic partial differential equations model one of the most important processes in the real-world: diffusion. Whether it is the diffusion of energy in space-time, the diffusion of species in ecology, the diffusion of chemicals in biochemical processes, or the diffusion of information in social networks, diffusion processes are ubiquitous and crucial in the physical and natural world as well as our everyday lives. This book is self-contained and covers key topics such as the Lp theory and Schauder theory, maximum principle, comparison principle, regularity and uniform estimates, initial-boundary value problems of semilinear parabolic scalar equations and weakly coupled parabolic systems, the upper and lower solutions method, monotone properties and long-time behaviours of solutions, convergence of solutions and stability of equilibrium solutions, global solutions and finite time blowup. It also touches on periodic boundary value problems, free boundary problems, and semigroup theory. The book covers major theories and methods of the field, including topics that are useful but hard to find elsewhere. This book is based on tried and tested teaching materials used at the Harbin Institute of Technology over the past ten years. Special care was taken to make the book suitable for classroom teaching as well as for self-study among graduate students. About the Author: Mingxin Wang is Professor of Mathematics at Harbin Institute of Technology, China. He has published ten monographs and textbooks and 260 papers. He is also a supervisor of 30 PhD students.

Nonlinear Optimal Control Theory

Nonlinear Optimal Control Theory PDF Author: Leonard David Berkovitz
Publisher: CRC Press
ISBN: 1466560266
Category : Mathematics
Languages : en
Pages : 394

Get Book Here

Book Description
Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniques in diverse areas. Drawing on classroom-tested material from Purdue University and North Carolina State University, the book gives a unified account of bounded state problems governed by ordinary, integrodifferential, and delay systems. It also discusses Hamilton-Jacobi theory. By providing a sufficient and rigorous treatment of finite dimensional control problems, the book equips readers with the foundation to deal with other types of control problems, such as those governed by stochastic differential equations, partial differential equations, and differential games.

Smoothing and Decay Estimates for Nonlinear Diffusion Equations

Smoothing and Decay Estimates for Nonlinear Diffusion Equations PDF Author: Juan Luis Vázquez
Publisher: Oxford University Press, USA
ISBN: 0199202974
Category : Mathematics
Languages : en
Pages : 249

Get Book Here

Book Description
This text is concerned with quantitative aspects of the theory of nonlinear diffusion equations, whichappear as mathematical models in different branches of Physics, Chemistry, Biology and Engineering.

Discovering Evolution Equations with Applications

Discovering Evolution Equations with Applications PDF Author: Mark McKibben
Publisher: CRC Press
ISBN: 142009212X
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
Most existing books on evolution equations tend either to cover a particular class of equations in too much depth for beginners or focus on a very specific research direction. Thus, the field can be daunting for newcomers to the field who need access to preliminary material and behind-the-scenes detail. Taking an applications-oriented, conversation

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations PDF Author: Victor A. Galaktionov
Publisher: CRC Press
ISBN: 1482251736
Category : Mathematics
Languages : en
Pages : 565

Get Book Here

Book Description
Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations shows how four types of higher-order nonlinear evolution partial differential equations (PDEs) have many commonalities through their special quasilinear degenerate representations. The authors present a unified approach to deal with these quasilinear PDEs.The book

Introduction to the Calculus of Variations and Control with Modern Applications

Introduction to the Calculus of Variations and Control with Modern Applications PDF Author: John A. Burns
Publisher: CRC Press
ISBN: 146657139X
Category : Mathematics
Languages : en
Pages : 564

Get Book Here

Book Description
Introduction to the Calculus of Variations and Control with Modern Applications provides the fundamental background required to develop rigorous necessary conditions that are the starting points for theoretical and numerical approaches to modern variational calculus and control problems. The book also presents some classical sufficient conditions and discusses the importance of distinguishing between the necessary and sufficient conditions. In the first part of the text, the author develops the calculus of variations and provides complete proofs of the main results. He explains how the ideas behind the proofs are essential to the development of modern optimization and control theory. Focusing on optimal control problems, the second part shows how optimal control is a natural extension of the classical calculus of variations to more complex problems. By emphasizing the basic ideas and their mathematical development, this book gives you the foundation to use these mathematical tools to then tackle new problems. The text moves from simple to more complex problems, allowing you to see how the fundamental theory can be modified to address more difficult and advanced challenges. This approach helps you understand how to deal with future problems and applications in a realistic work environment.