Author: I. R. Porteous
Publisher: Cambridge University Press
ISBN: 9780521002646
Category : Mathematics
Languages : en
Pages : 354
Book Description
This is a revised version of the popular Geometric Differentiation, first edition.
Geometric Differentiation
Author: I. R. Porteous
Publisher: Cambridge University Press
ISBN: 9780521002646
Category : Mathematics
Languages : en
Pages : 354
Book Description
This is a revised version of the popular Geometric Differentiation, first edition.
Publisher: Cambridge University Press
ISBN: 9780521002646
Category : Mathematics
Languages : en
Pages : 354
Book Description
This is a revised version of the popular Geometric Differentiation, first edition.
Geometric Algebra for Computer Science
Author: Leo Dorst
Publisher: Elsevier
ISBN: 0080553109
Category : Juvenile Nonfiction
Languages : en
Pages : 664
Book Description
Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA
Publisher: Elsevier
ISBN: 0080553109
Category : Juvenile Nonfiction
Languages : en
Pages : 664
Book Description
Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA
Covariant Differentiation of Geometric Objects
Author: A. Szybiak
Publisher:
ISBN:
Category : Algebras, Linear
Languages : en
Pages : 48
Book Description
Publisher:
ISBN:
Category : Algebras, Linear
Languages : en
Pages : 48
Book Description
Yet Another Calculus Text
Author: Dan Sloughter
Publisher: Orange Grove Texts Plus
ISBN: 9781616100896
Category :
Languages : en
Pages : 0
Book Description
Publisher: Orange Grove Texts Plus
ISBN: 9781616100896
Category :
Languages : en
Pages : 0
Book Description
A Geometric Approach to Differential Forms
Author: David Bachman
Publisher: Springer Science & Business Media
ISBN: 0817683046
Category : Mathematics
Languages : en
Pages : 167
Book Description
This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.
Publisher: Springer Science & Business Media
ISBN: 0817683046
Category : Mathematics
Languages : en
Pages : 167
Book Description
This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.
Geometric Integration Theory
Author: Steven G. Krantz
Publisher: Springer Science & Business Media
ISBN: 0817646795
Category : Mathematics
Languages : en
Pages : 344
Book Description
This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.
Publisher: Springer Science & Business Media
ISBN: 0817646795
Category : Mathematics
Languages : en
Pages : 344
Book Description
This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.
Differential and Integral Calculus
Author: Clyde Elton Love
Publisher:
ISBN:
Category : Calculus
Languages : en
Pages : 386
Book Description
Publisher:
ISBN:
Category : Calculus
Languages : en
Pages : 386
Book Description
Differentiation in Practice: A Resource Guide for Differentiating Curriculum, Grades K-5
Author: Carol Ann Tomlinson
Publisher: ASCD
ISBN: 1416600876
Category : Education
Languages : en
Pages : 217
Book Description
Join Carol Ann Tomlinson and Caroline Cunningham Eidson in their continuing exploration of how real teachers incorporate differentiation principles and strategies throughout an entire instructional unit. Focusing on the elementary grades, but applicable at all levels, Differentiation in Practice, Grades K-5 will teach anyone interested in designing and implementing differentiated curriculum how to do so or how to do so more effectively. Included are * Annotated lesson plans for differentiated units in language arts, social studies, science, and mathematics. * Samples of differentiated product assignments, learning contracts, rubrics, and homework handouts. * An overview of the non-negotiables in differentiated classrooms and guidelines for using the book as a learning tool. * An extended glossary and recommended readings for further exploration of key ideas and strategies. Each unit highlights underlying standards, delineates learning goals, and takes you step by step through the instructional process. Unit developers provide running commentary on their use of flexible grouping and pacing, tiered assignments and assessments, learning contracts, and numerous other strategies. The models and insight presented will inform your own differentiation efforts and help you meet the challenge of mixed-ability classrooms with academically responsive curriculum appropriate for all learners. Note: This product listing is for the Adobe Acrobat (PDF) version of the book.
Publisher: ASCD
ISBN: 1416600876
Category : Education
Languages : en
Pages : 217
Book Description
Join Carol Ann Tomlinson and Caroline Cunningham Eidson in their continuing exploration of how real teachers incorporate differentiation principles and strategies throughout an entire instructional unit. Focusing on the elementary grades, but applicable at all levels, Differentiation in Practice, Grades K-5 will teach anyone interested in designing and implementing differentiated curriculum how to do so or how to do so more effectively. Included are * Annotated lesson plans for differentiated units in language arts, social studies, science, and mathematics. * Samples of differentiated product assignments, learning contracts, rubrics, and homework handouts. * An overview of the non-negotiables in differentiated classrooms and guidelines for using the book as a learning tool. * An extended glossary and recommended readings for further exploration of key ideas and strategies. Each unit highlights underlying standards, delineates learning goals, and takes you step by step through the instructional process. Unit developers provide running commentary on their use of flexible grouping and pacing, tiered assignments and assessments, learning contracts, and numerous other strategies. The models and insight presented will inform your own differentiation efforts and help you meet the challenge of mixed-ability classrooms with academically responsive curriculum appropriate for all learners. Note: This product listing is for the Adobe Acrobat (PDF) version of the book.
Basic Elements of Differential Geometry and Topology
Author: S.P. Novikov
Publisher: Springer Science & Business Media
ISBN: 9401578958
Category : Mathematics
Languages : en
Pages : 500
Book Description
One service mathematics has rendered the 'Et moi ..., si j'avait su comment en revenir, je n'y serais point aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Matht"natics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics seNe as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series
Publisher: Springer Science & Business Media
ISBN: 9401578958
Category : Mathematics
Languages : en
Pages : 500
Book Description
One service mathematics has rendered the 'Et moi ..., si j'avait su comment en revenir, je n'y serais point aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Matht"natics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics seNe as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series
Advances in Discrete Differential Geometry
Author: Alexander I. Bobenko
Publisher: Springer
ISBN: 3662504472
Category : Mathematics
Languages : en
Pages : 441
Book Description
This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, and on pure mathematics and its practical applications. The interaction of these facets is demonstrated by concrete examples, including discrete conformal mappings, discrete complex analysis, discrete curvatures and special surfaces, discrete integrable systems, conformal texture mappings in computer graphics, and free-form architecture. This richly illustrated book will convince readers that this new branch of mathematics is both beautiful and useful. It will appeal to graduate students and researchers in differential geometry, complex analysis, mathematical physics, numerical methods, discrete geometry, as well as computer graphics and geometry processing.
Publisher: Springer
ISBN: 3662504472
Category : Mathematics
Languages : en
Pages : 441
Book Description
This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, and on pure mathematics and its practical applications. The interaction of these facets is demonstrated by concrete examples, including discrete conformal mappings, discrete complex analysis, discrete curvatures and special surfaces, discrete integrable systems, conformal texture mappings in computer graphics, and free-form architecture. This richly illustrated book will convince readers that this new branch of mathematics is both beautiful and useful. It will appeal to graduate students and researchers in differential geometry, complex analysis, mathematical physics, numerical methods, discrete geometry, as well as computer graphics and geometry processing.