Author: Leo Dorst
Publisher: Elsevier
ISBN: 0080553109
Category : Juvenile Nonfiction
Languages : en
Pages : 664
Book Description
Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA
Geometric Algebra for Computer Science
Geometric Computing Science
Author: Robert Hermann
Publisher:
ISBN: 9780915692415
Category : Mathematics
Languages : en
Pages : 414
Book Description
Publisher:
ISBN: 9780915692415
Category : Mathematics
Languages : en
Pages : 414
Book Description
Geometric Algebra Computing
Author: Eduardo Bayro Corrochano
Publisher: Springer
ISBN: 9781447157687
Category : Computers
Languages : en
Pages : 526
Book Description
This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Its accessible style is enhanced by examples, figures and experimental analysis.
Publisher: Springer
ISBN: 9781447157687
Category : Computers
Languages : en
Pages : 526
Book Description
This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Its accessible style is enhanced by examples, figures and experimental analysis.
Geometric Methods and Applications
Author: Jean Gallier
Publisher: Springer Science & Business Media
ISBN: 1461301378
Category : Mathematics
Languages : en
Pages : 584
Book Description
As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.
Publisher: Springer Science & Business Media
ISBN: 1461301378
Category : Mathematics
Languages : en
Pages : 584
Book Description
As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.
Geometric Computing with Clifford Algebras
Author: Gerald Sommer
Publisher: Springer Science & Business Media
ISBN: 3662046210
Category : Computers
Languages : en
Pages : 559
Book Description
This monograph-like anthology introduces the concepts and framework of Clifford algebra. It provides a rich source of examples of how to work with this formalism. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work shows that Clifford algebra provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics.
Publisher: Springer Science & Business Media
ISBN: 3662046210
Category : Computers
Languages : en
Pages : 559
Book Description
This monograph-like anthology introduces the concepts and framework of Clifford algebra. It provides a rich source of examples of how to work with this formalism. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work shows that Clifford algebra provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics.
Computational Geometry
Author: Franco P. Preparata
Publisher: Springer Science & Business Media
ISBN: 1461210984
Category : Mathematics
Languages : en
Pages : 413
Book Description
From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2
Publisher: Springer Science & Business Media
ISBN: 1461210984
Category : Mathematics
Languages : en
Pages : 413
Book Description
From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2
Introduction to Geometric Computing
Author: Sherif Ghali
Publisher: Springer Science & Business Media
ISBN: 1848001150
Category : Computers
Languages : en
Pages : 338
Book Description
Computing is quickly making much of geometry intriguing not only for philosophers and mathematicians, but also for scientists and engineers. What is the core set of topics that a practitioner needs to study before embarking on the design and implementation of a geometric system in a specialized discipline? This book attempts to find the answer. Every programmer tackling a geometric computing problem encounters design decisions that need to be solved. This book reviews the geometric theory then applies it in an attempt to find that elusive "right" design.
Publisher: Springer Science & Business Media
ISBN: 1848001150
Category : Computers
Languages : en
Pages : 338
Book Description
Computing is quickly making much of geometry intriguing not only for philosophers and mathematicians, but also for scientists and engineers. What is the core set of topics that a practitioner needs to study before embarking on the design and implementation of a geometric system in a specialized discipline? This book attempts to find the answer. Every programmer tackling a geometric computing problem encounters design decisions that need to be solved. This book reviews the geometric theory then applies it in an attempt to find that elusive "right" design.
Handbook of Geometric Computing
Author: Eduardo Bayro Corrochano
Publisher: Springer Science & Business Media
ISBN: 3540282475
Category : Computers
Languages : en
Pages : 773
Book Description
Many computer scientists, engineers, applied mathematicians, and physicists use geometry theory and geometric computing methods in the design of perception-action systems, intelligent autonomous systems, and man-machine interfaces. This handbook brings together the most recent advances in the application of geometric computing for building such systems, with contributions from leading experts in the important fields of neuroscience, neural networks, image processing, pattern recognition, computer vision, uncertainty in geometric computations, conformal computational geometry, computer graphics and visualization, medical imagery, geometry and robotics, and reaching and motion planning. For the first time, the various methods are presented in a comprehensive, unified manner. This handbook is highly recommended for postgraduate students and researchers working on applications such as automated learning; geometric and fuzzy reasoning; human-like artificial vision; tele-operation; space maneuvering; haptics; rescue robots; man-machine interfaces; tele-immersion; computer- and robotics-aided neurosurgery or orthopedics; the assembly and design of humanoids; and systems for metalevel reasoning.
Publisher: Springer Science & Business Media
ISBN: 3540282475
Category : Computers
Languages : en
Pages : 773
Book Description
Many computer scientists, engineers, applied mathematicians, and physicists use geometry theory and geometric computing methods in the design of perception-action systems, intelligent autonomous systems, and man-machine interfaces. This handbook brings together the most recent advances in the application of geometric computing for building such systems, with contributions from leading experts in the important fields of neuroscience, neural networks, image processing, pattern recognition, computer vision, uncertainty in geometric computations, conformal computational geometry, computer graphics and visualization, medical imagery, geometry and robotics, and reaching and motion planning. For the first time, the various methods are presented in a comprehensive, unified manner. This handbook is highly recommended for postgraduate students and researchers working on applications such as automated learning; geometric and fuzzy reasoning; human-like artificial vision; tele-operation; space maneuvering; haptics; rescue robots; man-machine interfaces; tele-immersion; computer- and robotics-aided neurosurgery or orthopedics; the assembly and design of humanoids; and systems for metalevel reasoning.
LEDA
Author: Kurt Mehlhorn
Publisher: Cambridge University Press
ISBN: 9780521563291
Category : Computers
Languages : en
Pages : 1050
Book Description
LEDA is a library of efficient data types and algorithms and a platform for combinatorial and geometric computing on which application programs can be built. In each of the core computer science areas of data structures, graph and network algorithms, and computational geometry, LEDA covers all (and more) that is found in the standard textbooks. LEDA is the first such library; it is written in C++ and is available on many types of machine. Whilst the software is freely available worldwide and is installed at hundreds of sites, this is the first book devoted to the library. Written by the main authors of LEDA, it is the definitive account, describing how the system is constructed and operates and how it can be used. The authors supply ample examples from a range of areas to show how the library can be used in practice, making the book essential for all workers in algorithms, data structures and computational geometry.
Publisher: Cambridge University Press
ISBN: 9780521563291
Category : Computers
Languages : en
Pages : 1050
Book Description
LEDA is a library of efficient data types and algorithms and a platform for combinatorial and geometric computing on which application programs can be built. In each of the core computer science areas of data structures, graph and network algorithms, and computational geometry, LEDA covers all (and more) that is found in the standard textbooks. LEDA is the first such library; it is written in C++ and is available on many types of machine. Whilst the software is freely available worldwide and is installed at hundreds of sites, this is the first book devoted to the library. Written by the main authors of LEDA, it is the definitive account, describing how the system is constructed and operates and how it can be used. The authors supply ample examples from a range of areas to show how the library can be used in practice, making the book essential for all workers in algorithms, data structures and computational geometry.
Foundations of Geometric Algebra Computing
Author: Dietmar Hildenbrand
Publisher: Springer Science & Business Media
ISBN: 3642317944
Category : Computers
Languages : en
Pages : 217
Book Description
The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.
Publisher: Springer Science & Business Media
ISBN: 3642317944
Category : Computers
Languages : en
Pages : 217
Book Description
The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.