Author: S. Alinhac
Publisher: Cambridge University Press
ISBN: 1139485814
Category : Mathematics
Languages : en
Pages :
Book Description
Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required.
Geometric Analysis of Hyperbolic Differential Equations: An Introduction
Author: S. Alinhac
Publisher: Cambridge University Press
ISBN: 1139485814
Category : Mathematics
Languages : en
Pages :
Book Description
Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required.
Publisher: Cambridge University Press
ISBN: 1139485814
Category : Mathematics
Languages : en
Pages :
Book Description
Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required.
Geometric Analysis of Hyperbolic Differential Equations
Author: Serge Alinhac
Publisher:
ISBN: 9781139127844
Category : Differential equations, Hyperbolic
Languages : en
Pages : 129
Book Description
A self-contained presentation of the tools of Lorentzian geometry necessary to access recent works in mathematical relativity.
Publisher:
ISBN: 9781139127844
Category : Differential equations, Hyperbolic
Languages : en
Pages : 129
Book Description
A self-contained presentation of the tools of Lorentzian geometry necessary to access recent works in mathematical relativity.
Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Hyperbolic Partial Differential Equations
Author: Serge Alinhac
Publisher: Springer Science & Business Media
ISBN: 0387878238
Category : Mathematics
Languages : en
Pages : 159
Book Description
This excellent introduction to hyperbolic differential equations is devoted to linear equations and symmetric systems, as well as conservation laws. The book is divided into two parts. The first, which is intuitive and easy to visualize, includes all aspects of the theory involving vector fields and integral curves; the second describes the wave equation and its perturbations for two- or three-space dimensions. Over 100 exercises are included, as well as "do it yourself" instructions for the proofs of many theorems. Only an understanding of differential calculus is required. Notes at the end of the self-contained chapters, as well as references at the end of the book, enable ease-of-use for both the student and the independent researcher.
Publisher: Springer Science & Business Media
ISBN: 0387878238
Category : Mathematics
Languages : en
Pages : 159
Book Description
This excellent introduction to hyperbolic differential equations is devoted to linear equations and symmetric systems, as well as conservation laws. The book is divided into two parts. The first, which is intuitive and easy to visualize, includes all aspects of the theory involving vector fields and integral curves; the second describes the wave equation and its perturbations for two- or three-space dimensions. Over 100 exercises are included, as well as "do it yourself" instructions for the proofs of many theorems. Only an understanding of differential calculus is required. Notes at the end of the self-contained chapters, as well as references at the end of the book, enable ease-of-use for both the student and the independent researcher.
Geometric Mechanics on Riemannian Manifolds
Author: Ovidiu Calin
Publisher: Springer Science & Business Media
ISBN: 0817644210
Category : Mathematics
Languages : en
Pages : 285
Book Description
* A geometric approach to problems in physics, many of which cannot be solved by any other methods * Text is enriched with good examples and exercises at the end of every chapter * Fine for a course or seminar directed at grad and adv. undergrad students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics
Publisher: Springer Science & Business Media
ISBN: 0817644210
Category : Mathematics
Languages : en
Pages : 285
Book Description
* A geometric approach to problems in physics, many of which cannot be solved by any other methods * Text is enriched with good examples and exercises at the end of every chapter * Fine for a course or seminar directed at grad and adv. undergrad students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics
Reversibility in Dynamics and Group Theory
Author: Anthony G. O'Farrell
Publisher: Cambridge University Press
ISBN: 1107442885
Category : Mathematics
Languages : en
Pages : 295
Book Description
An accessible yet systematic account of reversibility that demonstrates its impact throughout many diverse areas of mathematics.
Publisher: Cambridge University Press
ISBN: 1107442885
Category : Mathematics
Languages : en
Pages : 295
Book Description
An accessible yet systematic account of reversibility that demonstrates its impact throughout many diverse areas of mathematics.
Automorphisms and Equivalence Relations in Topological Dynamics
Author: David B. Ellis
Publisher: Cambridge University Press
ISBN: 1139952935
Category : Mathematics
Languages : en
Pages : 283
Book Description
Focusing on the role that automorphisms and equivalence relations play in the algebraic theory of minimal sets provides an original treatment of some key aspects of abstract topological dynamics. Such an approach is presented in this lucid and self-contained book, leading to simpler proofs of classical results, as well as providing motivation for further study. Minimal flows on compact Hausdorff spaces are studied as icers on the universal minimal flow M. The group of the icer representing a minimal flow is defined as a subgroup of the automorphism group G of M, and icers are constructed explicitly as relative products using subgroups of G. Many classical results are then obtained by examining the structure of the icers on M, including a proof of the Furstenberg structure theorem for distal extensions. This book is designed as both a guide for graduate students, and a source of interesting new ideas for researchers.
Publisher: Cambridge University Press
ISBN: 1139952935
Category : Mathematics
Languages : en
Pages : 283
Book Description
Focusing on the role that automorphisms and equivalence relations play in the algebraic theory of minimal sets provides an original treatment of some key aspects of abstract topological dynamics. Such an approach is presented in this lucid and self-contained book, leading to simpler proofs of classical results, as well as providing motivation for further study. Minimal flows on compact Hausdorff spaces are studied as icers on the universal minimal flow M. The group of the icer representing a minimal flow is defined as a subgroup of the automorphism group G of M, and icers are constructed explicitly as relative products using subgroups of G. Many classical results are then obtained by examining the structure of the icers on M, including a proof of the Furstenberg structure theorem for distal extensions. This book is designed as both a guide for graduate students, and a source of interesting new ideas for researchers.
Beyond Hyperbolicity
Author: Mark Hagen
Publisher: Cambridge University Press
ISBN: 1108577350
Category : Mathematics
Languages : en
Pages : 242
Book Description
Since the notion was introduced by Gromov in the 1980s, hyperbolicity of groups and spaces has played a significant role in geometric group theory; hyperbolic groups have good geometric properties that allow us to prove strong results. However, many classes of interest in our exploration of the universe of finitely generated groups contain examples that are not hyperbolic. Thus we wish to go 'beyond hyperbolicity' to find good generalisations that nevertheless permit similarly strong results. This book is the ideal resource for researchers wishing to contribute to this rich and active field. The first two parts are devoted to mini-courses and expository articles on coarse median spaces, semihyperbolicity, acylindrical hyperbolicity, Morse boundaries, and hierarchical hyperbolicity. These serve as an introduction for students and a reference for experts. The topics of the surveys (and more) re-appear in the research articles that make up Part III, presenting the latest results beyond hyperbolicity.
Publisher: Cambridge University Press
ISBN: 1108577350
Category : Mathematics
Languages : en
Pages : 242
Book Description
Since the notion was introduced by Gromov in the 1980s, hyperbolicity of groups and spaces has played a significant role in geometric group theory; hyperbolic groups have good geometric properties that allow us to prove strong results. However, many classes of interest in our exploration of the universe of finitely generated groups contain examples that are not hyperbolic. Thus we wish to go 'beyond hyperbolicity' to find good generalisations that nevertheless permit similarly strong results. This book is the ideal resource for researchers wishing to contribute to this rich and active field. The first two parts are devoted to mini-courses and expository articles on coarse median spaces, semihyperbolicity, acylindrical hyperbolicity, Morse boundaries, and hierarchical hyperbolicity. These serve as an introduction for students and a reference for experts. The topics of the surveys (and more) re-appear in the research articles that make up Part III, presenting the latest results beyond hyperbolicity.
Moduli Spaces
Author: Leticia Brambila
Publisher: Cambridge University Press
ISBN: 1107636388
Category : Mathematics
Languages : en
Pages : 347
Book Description
A graduate-level introduction to some of the important contemporary ideas and problems in the theory of moduli spaces.
Publisher: Cambridge University Press
ISBN: 1107636388
Category : Mathematics
Languages : en
Pages : 347
Book Description
A graduate-level introduction to some of the important contemporary ideas and problems in the theory of moduli spaces.
Optimal Transport
Author: Yann Ollivier
Publisher: Cambridge University Press
ISBN: 1139993623
Category : Mathematics
Languages : en
Pages : 317
Book Description
The theory of optimal transportation has its origins in the eighteenth century when the problem of transporting resources at a minimal cost was first formalised. Through subsequent developments, particularly in recent decades, it has become a powerful modern theory. This book contains the proceedings of the summer school 'Optimal Transportation: Theory and Applications' held at the Fourier Institute in Grenoble. The event brought together mathematicians from pure and applied mathematics, astrophysics, economics and computer science. Part I of this book is devoted to introductory lecture notes accessible to graduate students, while Part II contains research papers. Together, they represent a valuable resource on both fundamental and advanced aspects of optimal transportation, its applications, and its interactions with analysis, geometry, PDE and probability, urban planning and economics. Topics covered include Ricci flow, the Euler equations, functional inequalities, curvature-dimension conditions, and traffic congestion.
Publisher: Cambridge University Press
ISBN: 1139993623
Category : Mathematics
Languages : en
Pages : 317
Book Description
The theory of optimal transportation has its origins in the eighteenth century when the problem of transporting resources at a minimal cost was first formalised. Through subsequent developments, particularly in recent decades, it has become a powerful modern theory. This book contains the proceedings of the summer school 'Optimal Transportation: Theory and Applications' held at the Fourier Institute in Grenoble. The event brought together mathematicians from pure and applied mathematics, astrophysics, economics and computer science. Part I of this book is devoted to introductory lecture notes accessible to graduate students, while Part II contains research papers. Together, they represent a valuable resource on both fundamental and advanced aspects of optimal transportation, its applications, and its interactions with analysis, geometry, PDE and probability, urban planning and economics. Topics covered include Ricci flow, the Euler equations, functional inequalities, curvature-dimension conditions, and traffic congestion.