Geomechanics in Reservoir Simulation

Geomechanics in Reservoir Simulation PDF Author: Pascal Longuemare
Publisher: Editions TECHNIP
ISBN: 9782710808336
Category : Technology & Engineering
Languages : en
Pages : 208

Get Book Here

Book Description

Geomechanics in Reservoir Simulation

Geomechanics in Reservoir Simulation PDF Author: Pascal Longuemare
Publisher: Editions TECHNIP
ISBN: 9782710808336
Category : Technology & Engineering
Languages : en
Pages : 208

Get Book Here

Book Description


Reservoir Geomechanics

Reservoir Geomechanics PDF Author: Mark D. Zoback
Publisher: Cambridge University Press
ISBN: 1107320089
Category : Technology & Engineering
Languages : en
Pages : 505

Get Book Here

Book Description
This interdisciplinary book encompasses the fields of rock mechanics, structural geology and petroleum engineering to address a wide range of geomechanical problems that arise during the exploitation of oil and gas reservoirs. It considers key practical issues such as prediction of pore pressure, estimation of hydrocarbon column heights and fault seal potential, determination of optimally stable well trajectories, casing set points and mud weights, changes in reservoir performance during depletion, and production-induced faulting and subsidence. The book establishes the basic principles involved before introducing practical measurement and experimental techniques to improve recovery and reduce exploitation costs. It illustrates their successful application through case studies taken from oil and gas fields around the world. This book is a practical reference for geoscientists and engineers in the petroleum and geothermal industries, and for research scientists interested in stress measurements and their application to problems of faulting and fluid flow in the crust.

Unconventional Reservoir Geomechanics

Unconventional Reservoir Geomechanics PDF Author: Mark D. Zoback
Publisher: Cambridge University Press
ISBN: 1107087074
Category : Business & Economics
Languages : en
Pages : 495

Get Book Here

Book Description
A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.

Geomechanics and Fluidodynamics

Geomechanics and Fluidodynamics PDF Author: Victor N. Nikolaevskiy
Publisher: Springer Science & Business Media
ISBN: 9780792337935
Category : Science
Languages : en
Pages : 376

Get Book Here

Book Description
This monograph is based on subsurface hydrodynamics and applied geomechanics and places them in a unifying framework. It focuses on the understanding of physical and mechanical properties of geomaterials by presenting mathematical models of deformation and fracture with related experiments.

Principles of Applied Reservoir Simulation

Principles of Applied Reservoir Simulation PDF Author: John R. Fanchi
Publisher: Elsevier
ISBN: 0750679336
Category : Business & Economics
Languages : en
Pages : 530

Get Book Here

Book Description
Simulate reservoirs effectively to extract the maximum oil, gas and profit, with this book and free simlation software on companion web site.

An Introduction to Reservoir Simulation Using MATLAB/GNU Octave

An Introduction to Reservoir Simulation Using MATLAB/GNU Octave PDF Author: Knut-Andreas Lie
Publisher: Cambridge University Press
ISBN: 1108492436
Category : Business & Economics
Languages : en
Pages : 677

Get Book Here

Book Description
Presents numerical methods for reservoir simulation, with efficient implementation and examples using widely-used online open-source code, for researchers, professionals and advanced students. This title is also available as Open Access on Cambridge Core.

Reservoir Modelling

Reservoir Modelling PDF Author: Steve Cannon
Publisher: John Wiley & Sons
ISBN: 1119313465
Category : Science
Languages : en
Pages : 328

Get Book Here

Book Description
The essential resource to an integrated approach to reservoir modelling by highlighting both the input of data and the modelling results Reservoir Modelling offers a comprehensive guide to the procedures and workflow for building a 3-D model. Designed to be practical, the principles outlined can be applied to any modelling project regardless of the software used. The author — a noted practitioner in the field — captures the heterogeneity due to structure, stratigraphy and sedimentology that has an impact on flow in the reservoir. This essential guide follows a general workflow from data QC and project management, structural modelling, facies and property modelling to upscaling and the requirements for dynamic modelling. The author discusses structural elements of a model and reviews both seismic interpretation and depth conversion, which are known to contribute most to volumetric uncertainty and shows how large-scale stratigraphic relationships are integrated into the reservoir framework. The text puts the focus on geostatistical modelling of facies and heterogeneities that constrain the distribution of reservoir properties including porosity, permeability and water saturation. In addition, the author discusses the role of uncertainty analysis in the static model and its impact on volumetric estimation. The text also addresses some typical approaches to modelling specific reservoirs through a mix of case studies and illustrative examples and: Offers a practical guide to the use of data to build a successful reservoir model Draws on the latest advances in 3-D modelling software Reviews facies modelling, the different methods and the need for understanding the geological interpretation of cores and logs Presents information on upscaling both the structure and the properties of a fine-scale geological model for dynamic simulation Stresses the importance of an interdisciplinary team-based approach Written for geophysicists, reservoir geologists and petroleum engineers, Reservoir Modelling offers the essential information needed to understand a reservoir for modelling and contains the multidisciplinary nature of a reservoir modelling project.

Petroleum Related Rock Mechanics

Petroleum Related Rock Mechanics PDF Author: Erling Fjær
Publisher: Elsevier
ISBN: 0080557090
Category : Science
Languages : en
Pages : 515

Get Book Here

Book Description
Engineers and geologists in the petroleum industry will find Petroleum Related Rock Mechanics, 2e, a powerful resource in providing a basis of rock mechanical knowledge - a knowledge which can greatly assist in the understanding of field behavior, design of test programs and the design of field operations. Not only does this text give an introduction to applications of rock mechanics within the petroleum industry, it has a strong focus on basics, drilling, production and reservoir engineering. Assessment of rock mechanical parameters is covered in depth, as is acoustic wave propagation in rocks, with possible link to 4D seismics as well as log interpretation. - Learn the basic principles behind rock mechanics from leading academic and industry experts - Quick reference and guide for engineers and geologists working in the field - Keep informed and up to date on all the latest methods and fundamental concepts

Geomechanics and Geology

Geomechanics and Geology PDF Author: J.P. Turner
Publisher: Geological Society of London
ISBN: 1786203200
Category : Science
Languages : en
Pages : 297

Get Book Here

Book Description
Geomechanics investigates the origin, magnitude and deformational consequences of stresses in the crust. In recent years awareness of geomechanical processes has been heightened by societal debates on fracking, human-induced seismicity, natural geohazards and safety issues with respect to petroleum exploration drilling, carbon sequestration and radioactive waste disposal. This volume explores the common ground linking geomechanics with inter alia economic and petroleum geology, structural geology, petrophysics, seismology, geotechnics, reservoir engineering and production technology. Geomechanics is a rapidly developing field that brings together a broad range of subsurface professionals seeking to use their expertise to solve current challenges in applied and fundamental geoscience. A rich diversity of case studies herein showcase applications of geomechanics to hydrocarbon exploration and field development, natural and artificial geohazards, reservoir stimulation, contemporary tectonics and subsurface fluid flow. These papers provide a representative snapshot of the exciting state of geomechanics and establish it firmly as a flourishing subdiscipline of geology that merits broadest exposure across the academic and corporate geosciences.

Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology

Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology PDF Author: Herbert F. Wang
Publisher: Princeton University Press
ISBN: 140088568X
Category : Science
Languages : en
Pages : 301

Get Book Here

Book Description
The theory of linear poroelasticity describes the interaction between mechanical effects and adding or removing fluid from rock. It is critical to the study of such geological phenomena as earthquakes and landslides and is important for numerous engineering projects, including dams, groundwater withdrawal, and petroleum extraction. Now an advanced text synthesizes in one place, with one notation, numerous classical solutions and applications of this highly useful theory. The introductory chapter recounts parallel developments in geomechanics, hydrogeology, and reservoir engineering that are unified by the tenets of poroelasticity. Next, the theory's constitutive and governing equations and their associated material parameters are described. These equations are then specialized for different simplifying geometries: unbounded problem domains, uniaxial strain, plane strain, radial symmetry, and axisymmetry. Example problems from geomechanics, hydrogeology, and petroleum engineering are incorporated throughout to illustrate poroelastic behavior and solution methods for a wide variety of real-world scenarios. The final chapter provides outlines for finite-element and boundary-element formulations of the field's governing equations. Whether read as a course of study or consulted as a reference by researchers and professionals, this volume's user-friendly presentation makes accessible one of geophysics' most important subjects and will do much to reduce poroelasticity's reputation as difficult to master.