Author: Peter Cook
Publisher: CSIRO PUBLISHING
ISBN: 1486302327
Category : Science
Languages : en
Pages : 652
Book Description
Carbon capture and geological storage (CCS) is presently the only way that we can make deep cuts in emissions from fossil fuel-based, large-scale sources of CO2 such as power stations and industrial plants. But if this technology is to be acceptable to the community, it is essential that it is credibly demonstrated by world-class scientists and engineers in an open and transparent manner at a commercially significant scale. The aim of the Otway Project was to do just this. Geologically Storing Carbon provides a detailed account of the CO2CRC Otway Project, one of the most comprehensive demonstrations of the deep geological storage or geosequestration of carbon dioxide undertaken anywhere. This book of 18 comprehensive chapters written by leading experts in the field is concerned with outstanding science, but it is not just a collection of scientific papers – it is about 'learning by doing'. For example, it explains how the project was organised, managed, funded and constructed, as well as the approach taken to community issues, regulations and approvals. It also describes how to understand the site: Are the rocks mechanically suitable? Will the CO2 leak? Is there enough storage capacity? Is monitoring effective? This is the book for geologists, engineers, regulators, project developers, industry, communities or anyone who wants to better understand how a carbon storage project really 'works'. It is also for people concerned with obtaining an in-depth appreciation of one of the key technology options for decreasing greenhouse emissions to the atmosphere.
Geologically Storing Carbon
Author: Peter Cook
Publisher: CSIRO PUBLISHING
ISBN: 1486302327
Category : Science
Languages : en
Pages : 652
Book Description
Carbon capture and geological storage (CCS) is presently the only way that we can make deep cuts in emissions from fossil fuel-based, large-scale sources of CO2 such as power stations and industrial plants. But if this technology is to be acceptable to the community, it is essential that it is credibly demonstrated by world-class scientists and engineers in an open and transparent manner at a commercially significant scale. The aim of the Otway Project was to do just this. Geologically Storing Carbon provides a detailed account of the CO2CRC Otway Project, one of the most comprehensive demonstrations of the deep geological storage or geosequestration of carbon dioxide undertaken anywhere. This book of 18 comprehensive chapters written by leading experts in the field is concerned with outstanding science, but it is not just a collection of scientific papers – it is about 'learning by doing'. For example, it explains how the project was organised, managed, funded and constructed, as well as the approach taken to community issues, regulations and approvals. It also describes how to understand the site: Are the rocks mechanically suitable? Will the CO2 leak? Is there enough storage capacity? Is monitoring effective? This is the book for geologists, engineers, regulators, project developers, industry, communities or anyone who wants to better understand how a carbon storage project really 'works'. It is also for people concerned with obtaining an in-depth appreciation of one of the key technology options for decreasing greenhouse emissions to the atmosphere.
Publisher: CSIRO PUBLISHING
ISBN: 1486302327
Category : Science
Languages : en
Pages : 652
Book Description
Carbon capture and geological storage (CCS) is presently the only way that we can make deep cuts in emissions from fossil fuel-based, large-scale sources of CO2 such as power stations and industrial plants. But if this technology is to be acceptable to the community, it is essential that it is credibly demonstrated by world-class scientists and engineers in an open and transparent manner at a commercially significant scale. The aim of the Otway Project was to do just this. Geologically Storing Carbon provides a detailed account of the CO2CRC Otway Project, one of the most comprehensive demonstrations of the deep geological storage or geosequestration of carbon dioxide undertaken anywhere. This book of 18 comprehensive chapters written by leading experts in the field is concerned with outstanding science, but it is not just a collection of scientific papers – it is about 'learning by doing'. For example, it explains how the project was organised, managed, funded and constructed, as well as the approach taken to community issues, regulations and approvals. It also describes how to understand the site: Are the rocks mechanically suitable? Will the CO2 leak? Is there enough storage capacity? Is monitoring effective? This is the book for geologists, engineers, regulators, project developers, industry, communities or anyone who wants to better understand how a carbon storage project really 'works'. It is also for people concerned with obtaining an in-depth appreciation of one of the key technology options for decreasing greenhouse emissions to the atmosphere.
Geologic Carbon Sequestration
Author: V. Vishal
Publisher: Springer
ISBN: 3319270192
Category : Science
Languages : en
Pages : 336
Book Description
This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.
Publisher: Springer
ISBN: 3319270192
Category : Science
Languages : en
Pages : 336
Book Description
This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.
Carbon Dioxide Sequestration in Geological Media
Author: Matthias Grobe
Publisher: AAPG
ISBN: 0891810668
Category : Science
Languages : en
Pages : 702
Book Description
Over the past 20 years, the concept of storing or permanently storing carbon dioxide in geological media has gained increasing attention as part of the important technology option of carbon capture and storage within a portfolio of options aimed at reducing anthropogenic emissions of greenhouse gases to the earths atmosphere. This book is structured into eight parts, and, among other topics, provides an overview of the current status and challenges of the science, regional assessment studies of carbon dioxide geological sequestration potential, and a discussion of the economics and regulatory aspects of carbon dioxide sequestration.
Publisher: AAPG
ISBN: 0891810668
Category : Science
Languages : en
Pages : 702
Book Description
Over the past 20 years, the concept of storing or permanently storing carbon dioxide in geological media has gained increasing attention as part of the important technology option of carbon capture and storage within a portfolio of options aimed at reducing anthropogenic emissions of greenhouse gases to the earths atmosphere. This book is structured into eight parts, and, among other topics, provides an overview of the current status and challenges of the science, regional assessment studies of carbon dioxide geological sequestration potential, and a discussion of the economics and regulatory aspects of carbon dioxide sequestration.
Geological Storage of Carbon Dioxide (CO2)
Author: J Gluyas
Publisher: Elsevier
ISBN: 085709727X
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
Geological storage and sequestration of carbon dioxide, in saline aquifers, depleted oil and gas fields or unminable coal seams, represents one of the most important processes for reducing humankind's emissions of greenhouse gases. Geological storage of carbon dioxide (CO2) reviews the techniques and wider implications of carbon dioxide capture and storage (CCS).Part one provides an overview of the fundamentals of the geological storage of CO2. Chapters discuss anthropogenic climate change and the role of CCS, the modelling of storage capacity, injectivity, migration and trapping of CO2, the monitoring of geological storage of CO2, and the role of pressure in CCS. Chapters in part two move on to explore the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and public engagement in projects, and the legal framework for CCS. Finally, part three focuses on a variety of different projects and includes case studies of offshore CO2 storage at Sleipner natural gas field beneath the North Sea, the CO2CRC Otway Project in Australia, on-shore CO2 storage at the Ketzin pilot site in Germany, and the K12-B CO2 injection project in the Netherlands.Geological storage of carbon dioxide (CO2) is a comprehensive resource for geoscientists and geotechnical engineers and academics and researches interested in the field. - Reviews the techniques and wider implications of carbon dioxide capture and storage (CCS) - An overview of the fundamentals of the geological storage of CO2 discussing the modelling of storage capacity, injectivity, migration and trapping of CO2 among other subjects - Explores the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and the legal framework for CCS
Publisher: Elsevier
ISBN: 085709727X
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
Geological storage and sequestration of carbon dioxide, in saline aquifers, depleted oil and gas fields or unminable coal seams, represents one of the most important processes for reducing humankind's emissions of greenhouse gases. Geological storage of carbon dioxide (CO2) reviews the techniques and wider implications of carbon dioxide capture and storage (CCS).Part one provides an overview of the fundamentals of the geological storage of CO2. Chapters discuss anthropogenic climate change and the role of CCS, the modelling of storage capacity, injectivity, migration and trapping of CO2, the monitoring of geological storage of CO2, and the role of pressure in CCS. Chapters in part two move on to explore the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and public engagement in projects, and the legal framework for CCS. Finally, part three focuses on a variety of different projects and includes case studies of offshore CO2 storage at Sleipner natural gas field beneath the North Sea, the CO2CRC Otway Project in Australia, on-shore CO2 storage at the Ketzin pilot site in Germany, and the K12-B CO2 injection project in the Netherlands.Geological storage of carbon dioxide (CO2) is a comprehensive resource for geoscientists and geotechnical engineers and academics and researches interested in the field. - Reviews the techniques and wider implications of carbon dioxide capture and storage (CCS) - An overview of the fundamentals of the geological storage of CO2 discussing the modelling of storage capacity, injectivity, migration and trapping of CO2 among other subjects - Explores the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and the legal framework for CCS
Geophysical Monitoring for Geologic Carbon Storage
Author: Lianjie Huang
Publisher: John Wiley & Sons
ISBN: 1119156831
Category : Science
Languages : en
Pages : 468
Book Description
Methods and techniques for monitoring subsurface carbon dioxide storage Storing carbon dioxide in underground geological formations is emerging as a promising technology to reduce carbon dioxide emissions in the atmosphere. A range of geophysical techniques can be deployed to remotely track carbon dioxide plumes and monitor changes in the subsurface, which is critical for ensuring for safe, long-term storage. Geophysical Monitoring for Geologic Carbon Storage provides a comprehensive review of different geophysical techniques currently in use and being developed, assessing their advantages and limitations. Volume highlights include: Geodetic and surface monitoring techniques Subsurface monitoring using seismic techniques Subsurface monitoring using non-seismic techniques Case studies of geophysical monitoring at different geologic carbon storage sites The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Publisher: John Wiley & Sons
ISBN: 1119156831
Category : Science
Languages : en
Pages : 468
Book Description
Methods and techniques for monitoring subsurface carbon dioxide storage Storing carbon dioxide in underground geological formations is emerging as a promising technology to reduce carbon dioxide emissions in the atmosphere. A range of geophysical techniques can be deployed to remotely track carbon dioxide plumes and monitor changes in the subsurface, which is critical for ensuring for safe, long-term storage. Geophysical Monitoring for Geologic Carbon Storage provides a comprehensive review of different geophysical techniques currently in use and being developed, assessing their advantages and limitations. Volume highlights include: Geodetic and surface monitoring techniques Subsurface monitoring using seismic techniques Subsurface monitoring using non-seismic techniques Case studies of geophysical monitoring at different geologic carbon storage sites The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Carbon Capture and Storage
Author: Steve A. Rackley
Publisher: Butterworth-Heinemann
ISBN: 0128120428
Category : Technology & Engineering
Languages : en
Pages : 699
Book Description
Carbon Capture and Storage, Second Edition, provides a thorough, non-specialist introduction to technologies aimed at reducing greenhouse gas emissions from burning fossil fuels during power generation and other energy-intensive industrial processes, such as steelmaking. Extensively revised and updated, this second edition provides detailed coverage of key carbon dioxide capture methods along with an examination of the most promising techniques for carbon storage. The book opens with an introductory section that provides background regarding the need to reduce greenhouse gas emissions, an overview of carbon capture and storage (CCS) technologies, and a primer in the fundamentals of power generation. The next chapters focus on key carbon capture technologies, including absorption, adsorption, and membrane-based systems, addressing their applications in both the power and non-power sectors. New for the second edition, a dedicated section on geological storage of carbon dioxide follows, with chapters addressing the relevant features, events, and processes (FEP) associated with this scenario. Non-geological storage methods such as ocean storage and storage in terrestrial ecosystems are the subject of the final group of chapters. A chapter on carbon dioxide transportation is also included. This extensively revised and expanded second edition will be a valuable resource for power plant engineers, chemical engineers, geological engineers, environmental engineers, and industrial engineers seeking a concise, yet authoritative one-volume overview of this field. Researchers, consultants, and policy makers entering this discipline also will benefit from this reference. - Provides all-inclusive and authoritative coverage of the major technologies under consideration for carbon capture and storage - Presents information in an approachable format, for those with a scientific or engineering background, as well as non-specialists - Includes a new Part III dedicated to geological storage of carbon dioxide, covering this topic in much more depth (9 chapters compared to 1 in the first edition) - Features revisions and updates to all chapters - Includes new sections or expanded content on: chemical looping/calcium looping; life-cycle GHG assessment of CCS technologies; non-power industries (e.g. including pulp/paper alongside ones already covered); carbon negative technologies (e.g. BECCS); gas-fired power plants; biomass and waste co-firing; and hydrate-based capture
Publisher: Butterworth-Heinemann
ISBN: 0128120428
Category : Technology & Engineering
Languages : en
Pages : 699
Book Description
Carbon Capture and Storage, Second Edition, provides a thorough, non-specialist introduction to technologies aimed at reducing greenhouse gas emissions from burning fossil fuels during power generation and other energy-intensive industrial processes, such as steelmaking. Extensively revised and updated, this second edition provides detailed coverage of key carbon dioxide capture methods along with an examination of the most promising techniques for carbon storage. The book opens with an introductory section that provides background regarding the need to reduce greenhouse gas emissions, an overview of carbon capture and storage (CCS) technologies, and a primer in the fundamentals of power generation. The next chapters focus on key carbon capture technologies, including absorption, adsorption, and membrane-based systems, addressing their applications in both the power and non-power sectors. New for the second edition, a dedicated section on geological storage of carbon dioxide follows, with chapters addressing the relevant features, events, and processes (FEP) associated with this scenario. Non-geological storage methods such as ocean storage and storage in terrestrial ecosystems are the subject of the final group of chapters. A chapter on carbon dioxide transportation is also included. This extensively revised and expanded second edition will be a valuable resource for power plant engineers, chemical engineers, geological engineers, environmental engineers, and industrial engineers seeking a concise, yet authoritative one-volume overview of this field. Researchers, consultants, and policy makers entering this discipline also will benefit from this reference. - Provides all-inclusive and authoritative coverage of the major technologies under consideration for carbon capture and storage - Presents information in an approachable format, for those with a scientific or engineering background, as well as non-specialists - Includes a new Part III dedicated to geological storage of carbon dioxide, covering this topic in much more depth (9 chapters compared to 1 in the first edition) - Features revisions and updates to all chapters - Includes new sections or expanded content on: chemical looping/calcium looping; life-cycle GHG assessment of CCS technologies; non-power industries (e.g. including pulp/paper alongside ones already covered); carbon negative technologies (e.g. BECCS); gas-fired power plants; biomass and waste co-firing; and hydrate-based capture
Geologically Storing Carbon
Author: Peter J. Cook
Publisher: Wiley
ISBN: 9781118986189
Category : Science
Languages : en
Pages : 0
Book Description
Carbon capture and geological storage (CCS) is presently the only way that we can make deep cuts in emissions from fossil fuel-based, large-scale sources of CO2 such as power stations and industrial plants. But if this technology is to be acceptable to the community, it is essential that it is credibly demonstrated by world-class scientists and engineers in an open and transparent manner at a commercially significant scale. The aim of the Australian Otway Project was to do just this. Geologically Storing Carbon provides a detailed account of the CO2CRC Otway Project, one of the most comprehensive demonstrations of the deep geological storage or geosequestration of carbon dioxide undertaken anywhere. This book of 18 comprehensive chapters, written by leading experts in the field, is more than a record of outstanding science- it is about "learning by doing". For example, it explains how the project was organised, managed, funded and constructed, as well as the approach taken to community issues, regulations and approvals. It also describes how to understand the site: Are the rocks mechanically suitable? Will the CO2 leak? Is there enough storage capacity? Is monitoring effective? This is the book for geologists, engineers, regulators, project developers, industry, communities, indeed anyone who wants to better understand how a carbon storage project really works. It is also for people concerned with obtaining an in-depth appreciation of one of the key technology options for decreasing greenhouse emissions to the atmosphere.
Publisher: Wiley
ISBN: 9781118986189
Category : Science
Languages : en
Pages : 0
Book Description
Carbon capture and geological storage (CCS) is presently the only way that we can make deep cuts in emissions from fossil fuel-based, large-scale sources of CO2 such as power stations and industrial plants. But if this technology is to be acceptable to the community, it is essential that it is credibly demonstrated by world-class scientists and engineers in an open and transparent manner at a commercially significant scale. The aim of the Australian Otway Project was to do just this. Geologically Storing Carbon provides a detailed account of the CO2CRC Otway Project, one of the most comprehensive demonstrations of the deep geological storage or geosequestration of carbon dioxide undertaken anywhere. This book of 18 comprehensive chapters, written by leading experts in the field, is more than a record of outstanding science- it is about "learning by doing". For example, it explains how the project was organised, managed, funded and constructed, as well as the approach taken to community issues, regulations and approvals. It also describes how to understand the site: Are the rocks mechanically suitable? Will the CO2 leak? Is there enough storage capacity? Is monitoring effective? This is the book for geologists, engineers, regulators, project developers, industry, communities, indeed anyone who wants to better understand how a carbon storage project really works. It is also for people concerned with obtaining an in-depth appreciation of one of the key technology options for decreasing greenhouse emissions to the atmosphere.
Negative Emissions Technologies and Reliable Sequestration
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309484529
Category : Science
Languages : en
Pages : 511
Book Description
To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.
Publisher: National Academies Press
ISBN: 0309484529
Category : Science
Languages : en
Pages : 511
Book Description
To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.
Science of Carbon Storage in Deep Saline Formations
Author: Pania Newell
Publisher: Elsevier
ISBN: 9780128127520
Category : Science
Languages : en
Pages : 0
Book Description
Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales summarizes state-of-the-art research, emphasizing how the coupling of physical and chemical processes as subsurface systems re-equilibrate during and after the injection of CO2. In addition, it addresses, in an easy-to-follow way, the lack of knowledge in understanding the coupled processes related to fluid flow, geomechanics and geochemistry over time and spatial scales. The book uniquely highlights process coupling and process interplay across time and spatial scales that are relevant to geological carbon storage.
Publisher: Elsevier
ISBN: 9780128127520
Category : Science
Languages : en
Pages : 0
Book Description
Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales summarizes state-of-the-art research, emphasizing how the coupling of physical and chemical processes as subsurface systems re-equilibrate during and after the injection of CO2. In addition, it addresses, in an easy-to-follow way, the lack of knowledge in understanding the coupled processes related to fluid flow, geomechanics and geochemistry over time and spatial scales. The book uniquely highlights process coupling and process interplay across time and spatial scales that are relevant to geological carbon storage.
How to Store CO2 Underground: Insights from early-mover CCS Projects
Author: Philip Ringrose
Publisher: Springer Nature
ISBN: 303033113X
Category : Science
Languages : en
Pages : 141
Book Description
This book introduces the scientific basis and engineering practice for CO2 storage, covering topics such as storage capacity, trapping mechanisms, CO2 phase behaviour and flow dynamics, engineering and geomechanics of geological storage, injection well design, and geophysical and geochemical monitoring. It also provides numerous examples from the early mover CCS projects, notably Sleipner and Snøhvit offshore Norway, as well as other pioneering CO2 storage projects.
Publisher: Springer Nature
ISBN: 303033113X
Category : Science
Languages : en
Pages : 141
Book Description
This book introduces the scientific basis and engineering practice for CO2 storage, covering topics such as storage capacity, trapping mechanisms, CO2 phase behaviour and flow dynamics, engineering and geomechanics of geological storage, injection well design, and geophysical and geochemical monitoring. It also provides numerous examples from the early mover CCS projects, notably Sleipner and Snøhvit offshore Norway, as well as other pioneering CO2 storage projects.