Genetics and Exploitation of Heterosis in Crops

Genetics and Exploitation of Heterosis in Crops PDF Author: J. G. Coors
Publisher:
ISBN: 9780891185499
Category : Electronic books
Languages : en
Pages : 0

Get Book Here

Book Description
Explore the momentous contributions of hybrid crop varieties with worldwide experts. Topics include an overview, quantitative genetics, genetic diversity, biochemistry and molecular biology, methodologies, commercial strategies, and examples from numerous crops.

Genetics and Exploitation of Heterosis in Crops

Genetics and Exploitation of Heterosis in Crops PDF Author: J. G. Coors
Publisher:
ISBN: 9780891185499
Category : Electronic books
Languages : en
Pages : 0

Get Book Here

Book Description
Explore the momentous contributions of hybrid crop varieties with worldwide experts. Topics include an overview, quantitative genetics, genetic diversity, biochemistry and molecular biology, methodologies, commercial strategies, and examples from numerous crops.

Plant Breeding

Plant Breeding PDF Author: H.K. Jain
Publisher: Springer Science & Business Media
ISBN: 9400710402
Category : Science
Languages : en
Pages : 813

Get Book Here

Book Description
The Indian Society of Genetics and Plant Breeding was established in 1941 in recognition of the growing contribution of improved crop varieties to the country's agriculture. Scientific plant breeding had started inIndia soon after the rediscovery of Mendel's laws of heredity. The Indian Agricultural Research Institute set up in 1905 and a number of Agricultural Colleges in different parts of the country carried out some of the earliest work mostly inthe form of pure-line selections. In subsequent years, hybridization programmes in crops like wheat, rice, oilseeds, grain legumes, sugarcane and cotton yielded a large number of improved cultivars with significantly higher yields. A turning point came in the 1960s with the development of hybrids in several crops including inter-specific hybrids in cotton. And when new germplasm with dwarfing genes became available in wheat and rice from CIMMYT and IRRI, respectively,Indian plant breeders quickly incorporated these genes into the genetic background of the country's widely grown varieties with excellent grain quality and other desirable traits. This was to mark the beginning of modem agriculture in India as more and more varieties were developed, characterized by a high harvest index and response to modem farm inputs like the inorganic fertilizers . India's green revolution which has led to major surpluses offood grains and othercommodities like sugar and cotton has been made possible by the work of one of the largest groups of plant breeders working in a coordinated network.

Quantitative Genetics in Maize Breeding

Quantitative Genetics in Maize Breeding PDF Author: Arnel R. Hallauer
Publisher: Springer Science & Business Media
ISBN: 1441907661
Category : Science
Languages : en
Pages : 669

Get Book Here

Book Description
Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm

Principles and Procedures of Plant Breeding

Principles and Procedures of Plant Breeding PDF Author: G. S. Chahal
Publisher: Alpha Science Int'l Ltd.
ISBN: 9781842650363
Category : Nature
Languages : en
Pages : 628

Get Book Here

Book Description
Alternate approaches for the exploitation of heterosis and population improvement have been elaborated with the help of schematic diagrams.

Heterosis Breeding in Vegetable Crops

Heterosis Breeding in Vegetable Crops PDF Author: Nagendra Rai
Publisher: New India Publishing
ISBN: 9788189422035
Category : Science
Languages : en
Pages : 564

Get Book Here

Book Description
With reference to India.

Principles of Plant Breeding

Principles of Plant Breeding PDF Author: Robert W. Allard
Publisher: John Wiley & Sons
ISBN: 9780471023098
Category : Technology & Engineering
Languages : en
Pages : 274

Get Book Here

Book Description
Die Pflanzenzucht enthält Elemente individueller und kultureller Selektion - ein Prozeß, den die langerwartete zweite Auflage hinsichtlich sowohl einzelner Pflanzen als auch kompletter Populationen unter die Lupe nimmt. Im Zuge der Aktualisierung des Stoffes wurden neue Themen aufgenommen: moderne Gewebekulturtechniken, molekularbiologische Verfahren, Aspekte der Wechselwirkung zwischen natürlicher und menschlicher Selektion und zwischen Genotyp und Umwelt sowie eine Reihe von Techniken zur Ertragssteigerung in ungünstigen Anbaugebieten. (05/99)

Hybrid Vegetable Development

Hybrid Vegetable Development PDF Author: Praveen K Singh
Publisher: CRC Press
ISBN: 9781560221197
Category : Technology & Engineering
Languages : en
Pages : 468

Get Book Here

Book Description
Get all the resource information you need on hybrid vegetable development—in one book! Discover the latest concepts in breeding and development of hybrid vegetables with Hybrid Vegetable Development. Respected authorities share their views on the most recent trends and the techniques used for hybrid vegetable development in various vegetable crops. This one book could become your comprehensive source for all aspects of breeding, development, and seed production. Hybrid Vegetable Development provides a huge volume of background information on eighteen of the most important world vegetable crops, including tomato, eggplant, hot pepper, bell pepper, cabbage, broccoli, cauliflower, onion, garden pea, and melons. Packed with helpful illustrations, diagrams, and tables, this book goes in-depth into hybrid development mechanisms, crop/floral biology, pollination control mechanisms genetics, breeding, and the exploitation of hybrid seed production on a commercial scale. Hybrid Vegetable Development covers: crop biology heterosis pollination control mechanisms hybrid seed production maintenance of inbred/pure lines seed production of major vegetables detailed descriptions of the mechanisms in hybrid vegetable development the status of transgenic vegetables Hybrid Vegetable Development is a valuable, comprehensive resource for agriculture industry experts and professionals, professors, and students.

Hybrid Rice Technology

Hybrid Rice Technology PDF Author: S. S. Virmani
Publisher: Int. Rice Res. Inst.
ISBN: 9712200531
Category : Hybrid rice
Languages : en
Pages : 304

Get Book Here

Book Description
This symposium is a follow-up to one held in China in 1986. Since then considerable progress has been made in research and development of hybrid rice. This second international symposium was held under the umbrella of the International Rice Research Conference. Eighty scientists and seed production experts from 18 countries, IRRI and FAO attended. Contributions covered breeding, biotechnology, seed production, agronomy, plant physiology, plant pathology, entomology and economics.

Return to Resistance

Return to Resistance PDF Author: Raoul A. Robinson
Publisher: IDRC
ISBN: 9780889367746
Category : Agricultural pests
Languages : en
Pages : 502

Get Book Here

Book Description
In the tradition of Silent Spring, Raoul Robinson's Return to Resistance calls for a revolution. Traditional plant breeding techniques have led us to depend more and more on chemical pesticides to protect ourcrops. Return to Resistance shows gardeners, farmers, and plant breeders how to use a long-neglected technique to create hardy new plant varieties that are naturally resistant to pests and disease. Horizontal resistance breeding has been largely ignored in this century due to the popularity and apparent successes of the Mendelian geneticists. However the colossal, unrecognized failure of m.

Heterosis

Heterosis PDF Author: R. Frankel
Publisher: Springer Science & Business Media
ISBN: 364281977X
Category : Technology & Engineering
Languages : en
Pages : 301

Get Book Here

Book Description
When trying to solicit authors for this book it became apparent that the causal factors for heterosis at the physiological and biochemical level are today almost as obscure as they were 30 years ago. Though biometrical-genetical analyses point to dispersion of complementary genes - not overdominance - as the major cause of the phenomenon, plant breeders' experience still suggests a cautious, pragmatic approach to the dominance-overdominance controversy in breeding hybrid cultivars. Thus we are faced with a striking discordance between our limited comprehension of the causal factors and mechanism of heter osis on the one hand, and the extensive agricultural practice of utiliza tion of hybrid vigor on the other. Such utilization is the result of the economic value of hybrid combinations displaying superior yields and qualities as well as stability of performance, of benefits derived in breeding programs, and of the enhanced varietal protection of proprietary rights. No comprehensive and critical analysis of the phenomenon of heterosis in economic plants has been published for the last three decades since the now classical book Heterosis, edited by J . W. Gowen (Iowa State College Press, Ames, Iowa, 1952). The present book attempts to fill the gap and to assess the status of our present knowl edge of the concept, the basis, the extent, and the application of heterosis in economic plants.