Genetic resources for microorganisms of current and potential use in aquaculture

Genetic resources for microorganisms of current and potential use in aquaculture PDF Author: Food and Agriculture Organization of the United Nations
Publisher: Food & Agriculture Org.
ISBN: 9251354111
Category : Technology & Engineering
Languages : en
Pages : 50

Get Book Here

Book Description
Aquaculture is the farming of aquatic organisms ranging from microbes to shellfish and finfish. Fisheries production from the capture of wild fish has remained fairly constant since the late 1980s and it is the increase in production from aquaculture that has led to substantial growth in fish production for human consumption, with aquaculture contributing more than wildcaught fisheries for the first time in 2014 and this trend is likely to continue. Global aquaculture production accounted for 44.1 percent of total global fish production, including production for non-food uses, in 2014. The share of fish produced by aquaculture for human consumption increased from 26 percent in 1994 to about 50 percent in 2014, with 73.8 million tonnes of fish valued at USD 160 billion being harvested from aquaculture in 2014. In facing the challenge of providing food to a growing human population predicted to reach 9.7 billion by 2050, fish consumption, especially produced from aquaculture, has an important role to play. The Second International Conference on Nutrition (ICN2) held in 2014 adopted the Rome Declaration on Nutrition that highlighted the key role of fish in meeting the nutritional needs of this growing population. Global per capita fish consumption has increased from under 10 kg in the 1960s to approach 20 kg in 2014 and 2015 and now provides over 3.1 billion people with approaching 20 percent of their animal protein intake, enhancing people’s diets around the world. Microbes play a critically important role in the cycling of nutrients in terrestrial and aquatic ecosystems globally. Marine microbes are responsible for approximately half of global primary production and play a huge role in the cycling of carbon, nitrogen, phosphorus and other nutrients. Microbes have a central role in sustaining life on earth and lie at the centre of such as sustainability and climate change. Microbes also have a direct, central and critically important role in fisheries and aquaculture. Microbes in natural marine and freshwater ecosystems are key components of food webs, primary and secondary production and nutrient cycling. A wide range of microbes are used directly in aquaculture as live feeds, probiotics, and in filtration systems. Aquatic microorganisms are therefore indispensable resources for growth of shellfish and finfish in natural aquatic ecosystems and in aquaculture.

Genetic resources for microorganisms of current and potential use in aquaculture

Genetic resources for microorganisms of current and potential use in aquaculture PDF Author: Food and Agriculture Organization of the United Nations
Publisher: Food & Agriculture Org.
ISBN: 9251354111
Category : Technology & Engineering
Languages : en
Pages : 50

Get Book Here

Book Description
Aquaculture is the farming of aquatic organisms ranging from microbes to shellfish and finfish. Fisheries production from the capture of wild fish has remained fairly constant since the late 1980s and it is the increase in production from aquaculture that has led to substantial growth in fish production for human consumption, with aquaculture contributing more than wildcaught fisheries for the first time in 2014 and this trend is likely to continue. Global aquaculture production accounted for 44.1 percent of total global fish production, including production for non-food uses, in 2014. The share of fish produced by aquaculture for human consumption increased from 26 percent in 1994 to about 50 percent in 2014, with 73.8 million tonnes of fish valued at USD 160 billion being harvested from aquaculture in 2014. In facing the challenge of providing food to a growing human population predicted to reach 9.7 billion by 2050, fish consumption, especially produced from aquaculture, has an important role to play. The Second International Conference on Nutrition (ICN2) held in 2014 adopted the Rome Declaration on Nutrition that highlighted the key role of fish in meeting the nutritional needs of this growing population. Global per capita fish consumption has increased from under 10 kg in the 1960s to approach 20 kg in 2014 and 2015 and now provides over 3.1 billion people with approaching 20 percent of their animal protein intake, enhancing people’s diets around the world. Microbes play a critically important role in the cycling of nutrients in terrestrial and aquatic ecosystems globally. Marine microbes are responsible for approximately half of global primary production and play a huge role in the cycling of carbon, nitrogen, phosphorus and other nutrients. Microbes have a central role in sustaining life on earth and lie at the centre of such as sustainability and climate change. Microbes also have a direct, central and critically important role in fisheries and aquaculture. Microbes in natural marine and freshwater ecosystems are key components of food webs, primary and secondary production and nutrient cycling. A wide range of microbes are used directly in aquaculture as live feeds, probiotics, and in filtration systems. Aquatic microorganisms are therefore indispensable resources for growth of shellfish and finfish in natural aquatic ecosystems and in aquaculture.

The State of the World’s Aquatic Genetic Resources for Food and Agriculture

The State of the World’s Aquatic Genetic Resources for Food and Agriculture PDF Author: Food and Agriculture Organization of the United Nations
Publisher: Food & Agriculture Org.
ISBN: 9251316082
Category : Technology & Engineering
Languages : en
Pages : 291

Get Book Here

Book Description
The conservation, sustainable use and development of aquatic genetic resources (AqGR) is critical to the future supply of fish. The State of the World’s Aquatic Genetic Resources for Food and Agriculture is the first ever global assessment of these resources, with the scope of this first Report being limited to cultured AqGR and their wild relatives, within national jurisdiction. The Report draws on 92 reports from FAO member countries and five specially commissioned thematic background studies. The reporting countries are responsible for 96 percent of global aquaculture production. The Report sets the context with a review of the state of world’s aquaculture and fisheries and includes overviews of the uses and exchanges of AqGR, the drivers and trends impacting AqGR and the extent of ex situ and in situ conservation efforts. The Report also investigates the roles of stakeholders in AqGR and the levels of activity in research, education, training and extension, and reviews national policies and the levels of regional and international cooperation on AqGR. Finally, needs and challenges are assessed in the context of the findings from the data collected from the countries. The Report represents a snapshot of the present status of AqGR and forms a valuable technical reference document, particularly where it presents standardized key terminology and concepts.

Genomics in Aquaculture

Genomics in Aquaculture PDF Author: Simon A MacKenzie
Publisher: Academic Press
ISBN: 0128016906
Category : Technology & Engineering
Languages : en
Pages : 306

Get Book Here

Book Description
Genomics in Aquaculture is a concise, must-have reference that describes current advances within the field of genomics and their applications to aquaculture. Written in an accessible manner for anyone—non-specialists to experts alike—this book provides in-depth coverage of genomics spanning from genome sequencing, to transcriptomics and proteomics. It provides, for ease of learning, examples from key species most relevant to current intensive aquaculture practice. Its coverage of minority species that have a specific biological interest (e.g., Pleuronectiformes) makes this book useful for countries that are developing such species. It is a robust, practical resource that covers foundational, functional, and applied aspects of genomics in aquaculture, presenting the most current information in a field of research that is rapidly growing. Provides the latest scientific methods and technologies to maximize efficiencies for healthy fish production, with summary tables for quick reference Offers an extended glossary of technical and methodological terms to help readers better understand key biological concepts Describes state-of-the-art technologies, such as transcriptomics and epigenomics, currently under development for future perspective of the field Covers minority species that have a specific biological interest (e.g., Pleuronectiformes), making the book useful to countries developing such species

Selective Breeding in Aquaculture: an Introduction

Selective Breeding in Aquaculture: an Introduction PDF Author: Trygve Gjedrem
Publisher: Springer Science & Business Media
ISBN: 9048127734
Category : Science
Languages : en
Pages : 221

Get Book Here

Book Description
The foundation of quantitative genetics theory was developed during the last century and facilitated many successful breeding programs for cultivated plants and t- restrial livestock. The results have been almost universally impressive, and today nearly all agricultural production utilises genetically improved seed and animals. The aquaculture industry can learn a great deal from these experiences, because the basic theory behind selective breeding is the same for all species. The ?rst published selection experiments in aquaculture started in 1920 s to improve disease resistance in ?sh, but it was not before the 1970 s that the ?rst family based breeding program was initiated for Atlantic salmon in Norway by AKVAFORSK. Unfortunately, the subsequent implementation of selective breeding on a wider scale in aquaculture has been slow, and despite the dramatic gains that have been demonstrated in a number of species, less than 10% of world aquaculture production is currently based on improved stocks. For the long-term sustainability of aquaculture production, there is an urgent need to develop and implement e- cient breeding programs for all species under commercial production. The ability for aquaculture to successfully meet the demands of an ever increasing human p- ulation, will rely on genetically improved stocks that utilise feed, water and land resources in an ef?cient way. Technological advances like genome sequences of aquaculture species, and advanced molecular methods means that there are new and exciting prospects for building on these well-established methods into the future.

Coping with Climate Change

Coping with Climate Change PDF Author:
Publisher: Food & Agriculture Organization of the UN (FAO)
ISBN: 9789251084410
Category : Aquatic germplasm resources
Languages : en
Pages : 0

Get Book Here

Book Description
Genetic resources for food and agriculture play a crucial role in food security, nutrition and livelihoods and in the provision of environmental services. They are key components of sustainability, resilience and adaptability in production systems. They underpin the ability of crops, livestock, aquatic organisms and forest trees to withstand a range of harsh conditions. Climate change poses new challenges to the management of the world's genetic resources for food and agriculture, but it also underlines their importance. At the request of the Commission on Genetic Resources for Food and Agriculture, FAO prepared thematic studies on the interactions between climate change and plant, animal, forest, aquatic, invertebrate and micro-organism genetic resources. This publication summarizes the results of these studies.

Managing Global Genetic Resources

Managing Global Genetic Resources PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309131863
Category : Technology & Engineering
Languages : en
Pages : 476

Get Book Here

Book Description
This anchor volume to the series Managing Global Genetic Resources examines the structure that underlies efforts to preserve genetic material, including the worldwide network of genetic collections; the role of biotechnology; and a host of issues that surround management and use. Among the topics explored are in situ versus ex situ conservation, management of very large collections of genetic material, problems of quarantine, the controversy over ownership or copyright of genetic material, and more.

Aquaponics Food Production Systems

Aquaponics Food Production Systems PDF Author: Simon Goddek
Publisher: Springer
ISBN: 3030159434
Category : Science
Languages : en
Pages : 620

Get Book Here

Book Description
This open access book, written by world experts in aquaponics and related technologies, provides the authoritative and comprehensive overview of the key aquaculture and hydroponic and other integrated systems, socio-economic and environmental aspects. Aquaponic systems, which combine aquaculture and vegetable food production offer alternative technology solutions for a world that is increasingly under stress through population growth, urbanisation, water shortages, land and soil degradation, environmental pollution, world hunger and climate change.

REPORT OF THE SECOND SESSION OF THE COMMITTEE ON FISHERIES ADVISORY WORKING GROUP ON AQUATIC GENETIC RESOURCES AND TECHNOLOGIES

REPORT OF THE SECOND SESSION OF THE COMMITTEE ON FISHERIES ADVISORY WORKING GROUP ON AQUATIC GENETIC RESOURCES AND TECHNOLOGIES PDF Author: Food and Agriculture Organization of the United Nations
Publisher: Food & Agriculture Org.
ISBN:
Category : Nature
Languages : en
Pages : 29

Get Book Here

Book Description
This paper reports on the main discussion points of the meeting, including the implementation of genetic improvement programmes and the setup of an information system to assess and monitor the status of aquatic genetic resources.

Seaweeds and microalgae

Seaweeds and microalgae PDF Author: Food and Agriculture Organization of the United Nations
Publisher: Food & Agriculture Org.
ISBN: 9251347107
Category : Technology & Engineering
Languages : en
Pages : 48

Get Book Here

Book Description
Algae, including seaweeds and microalgae, contribute nearly 30 percent of world aquaculture production (measured in wet weight), primarily from seaweeds. Seaweeds and cmicroalgae generate socio-economic benefits to tens of thousands of households, primarily in coastal communities, including numerous women empowered by seaweed cultivation. Various human health contributions, environmental benefits and ecosystem services of seaweeds and microalgae have drawn increasing attention to untapped potential of seaweed and microalgae cultivation. Highly imbalanced production and consumption across geographic regions implies a great potential in the development of seaweed and microalgae cultivation. Yet joint efforts of governments, the industry, the scientific community, international organizations, civil societies, and other stakeholders or experts are needed to realize the potential. This document examines the status and trends of global algae production with a focus on algae cultivation, recognizes the algae sector’s existing and potential contributions and benefits, highlights a variety of constraints and challenges over the sector’s sustainable development, and discusses lessons learned and way forward to unlock full potential in algae cultivation and FAO’s roles in the process. From a balanced perspective that recognizes not only the potential of algae but also constraints and challenges upon the realization of the potential, information and knowledge provided by this document can facilitate evidence-based policymaking and sector management in algae development at the global, regional and national levels.

The State of World Fisheries and Aquaculture 2018

The State of World Fisheries and Aquaculture 2018 PDF Author: Food and Agriculture Organization of the United Nations
Publisher: Food & Agriculture Org.
ISBN: 9251305625
Category : Technology & Engineering
Languages : en
Pages : 227

Get Book Here

Book Description
The 2018 edition of The State of World Fisheries and Aquaculture emphasizes the sector’s role in achieving the 2030 Agenda for Sustainable Development and the Sustainable Development Goals, and measurement of progress towards these goals. It notes the particular contributions of inland and small-scale fisheries, and highlights the importance of rights-based governance for equitable and inclusive development. As in past editions, the publication begins with a global analysis of trends in fisheries and aquaculture production, stocks, processing and use, trade and consumption, based on the latest official statistics, along with a review of the status of the world’s fishing fleets and human engagement and governance in the sector. Topics explored in Parts 2 to 4 include aquatic biodiversity; the ecosystem approach to fisheries and to aquaculture; climate change impacts and responses; the sector’s contribution to food security and human nutrition; and issues related to international trade, consumer protection and sustainable value chains. Global developments in combating illegal, unreported and unregulated fishing, selected ocean pollution concerns and FAO’s efforts to improve capture fishery data are also discussed. The issue concludes with the outlook for the sector, including projections to 2030. As always, The State of World Fisheries and Aquaculture aims to provide objective, reliable and up-to- date information to a wide audience, including policy-makers, managers, scientists, stakeholders and indeed all those interested in the fisheries and aquaculture sector.