Author: Richard Frankham
Publisher: Oxford University Press
ISBN: 0198783396
Category : Biodiversity
Languages : en
Pages : 426
Book Description
One of the greatest unmet challenges in conservation biology is the genetic management of fragmented populations of threatened animal and plant species. More than a million small, isolated, population fragments of threatened species are likely suffering inbreeding depression and loss of evolutionary potential, resulting in elevated extinction risks. Although these effects can often be reversed by re-establishing gene flow between population fragments, managers very rarely do this. On the contrary, genetic methods are used mainly to document genetic differentiation among populations, with most studies concluding that genetically differentiated populations should be managed separately, thereby isolating them yet further and dooming many to eventual extinction Many small population fragments are going extinct principally for genetic reasons. Although the rapidly advancing field of molecular genetics is continually providing new tools to measure the extent of population fragmentation and its genetic consequences, adequate guidance on how to use these data for effective conservation is still lacking. This accessible, authoritative text is aimed at senior undergraduate and graduate students interested in conservation biology, conservation genetics, and wildlife management. It will also be of particular relevance to conservation practitioners and natural resource managers, as well as a broader academic audience of conservation biologists and evolutionary ecologists.
Genetic Management of Fragmented Animal and Plant Populations
Author: Richard Frankham
Publisher: Oxford University Press
ISBN: 0198783396
Category : Biodiversity
Languages : en
Pages : 426
Book Description
One of the greatest unmet challenges in conservation biology is the genetic management of fragmented populations of threatened animal and plant species. More than a million small, isolated, population fragments of threatened species are likely suffering inbreeding depression and loss of evolutionary potential, resulting in elevated extinction risks. Although these effects can often be reversed by re-establishing gene flow between population fragments, managers very rarely do this. On the contrary, genetic methods are used mainly to document genetic differentiation among populations, with most studies concluding that genetically differentiated populations should be managed separately, thereby isolating them yet further and dooming many to eventual extinction Many small population fragments are going extinct principally for genetic reasons. Although the rapidly advancing field of molecular genetics is continually providing new tools to measure the extent of population fragmentation and its genetic consequences, adequate guidance on how to use these data for effective conservation is still lacking. This accessible, authoritative text is aimed at senior undergraduate and graduate students interested in conservation biology, conservation genetics, and wildlife management. It will also be of particular relevance to conservation practitioners and natural resource managers, as well as a broader academic audience of conservation biologists and evolutionary ecologists.
Publisher: Oxford University Press
ISBN: 0198783396
Category : Biodiversity
Languages : en
Pages : 426
Book Description
One of the greatest unmet challenges in conservation biology is the genetic management of fragmented populations of threatened animal and plant species. More than a million small, isolated, population fragments of threatened species are likely suffering inbreeding depression and loss of evolutionary potential, resulting in elevated extinction risks. Although these effects can often be reversed by re-establishing gene flow between population fragments, managers very rarely do this. On the contrary, genetic methods are used mainly to document genetic differentiation among populations, with most studies concluding that genetically differentiated populations should be managed separately, thereby isolating them yet further and dooming many to eventual extinction Many small population fragments are going extinct principally for genetic reasons. Although the rapidly advancing field of molecular genetics is continually providing new tools to measure the extent of population fragmentation and its genetic consequences, adequate guidance on how to use these data for effective conservation is still lacking. This accessible, authoritative text is aimed at senior undergraduate and graduate students interested in conservation biology, conservation genetics, and wildlife management. It will also be of particular relevance to conservation practitioners and natural resource managers, as well as a broader academic audience of conservation biologists and evolutionary ecologists.
Genetic Management of Fragmented Animal and Plant Populations
Author: Richard Frankham
Publisher: Oxford University Press
ISBN: 0191086061
Category : Science
Languages : en
Pages : 426
Book Description
One of the greatest unmet challenges in conservation biology is the genetic management of fragmented populations of threatened animal and plant species. More than a million small, isolated, population fragments of threatened species are likely suffering inbreeding depression and loss of evolutionary potential, resulting in elevated extinction risks. Although these effects can often be reversed by re-establishing gene flow between population fragments, managers very rarely do this. On the contrary, genetic methods are used mainly to document genetic differentiation among populations, with most studies concluding that genetically differentiated populations should be managed separately, thereby isolating them yet further and dooming many to eventual extinction! Many small population fragments are going extinct principally for genetic reasons. Although the rapidly advancing field of molecular genetics is continually providing new tools to measure the extent of population fragmentation and its genetic consequences, adequate guidance on how to use these data for effective conservation is still lacking. This accessible, authoritative text is aimed at senior undergraduate and graduate students interested in conservation biology, conservation genetics, and wildlife management. It will also be of particular relevance to conservation practitioners and natural resource managers, as well as a broader academic audience of conservation biologists and evolutionary ecologists.
Publisher: Oxford University Press
ISBN: 0191086061
Category : Science
Languages : en
Pages : 426
Book Description
One of the greatest unmet challenges in conservation biology is the genetic management of fragmented populations of threatened animal and plant species. More than a million small, isolated, population fragments of threatened species are likely suffering inbreeding depression and loss of evolutionary potential, resulting in elevated extinction risks. Although these effects can often be reversed by re-establishing gene flow between population fragments, managers very rarely do this. On the contrary, genetic methods are used mainly to document genetic differentiation among populations, with most studies concluding that genetically differentiated populations should be managed separately, thereby isolating them yet further and dooming many to eventual extinction! Many small population fragments are going extinct principally for genetic reasons. Although the rapidly advancing field of molecular genetics is continually providing new tools to measure the extent of population fragmentation and its genetic consequences, adequate guidance on how to use these data for effective conservation is still lacking. This accessible, authoritative text is aimed at senior undergraduate and graduate students interested in conservation biology, conservation genetics, and wildlife management. It will also be of particular relevance to conservation practitioners and natural resource managers, as well as a broader academic audience of conservation biologists and evolutionary ecologists.
A Practical Guide for Genetic Management of Fragmented Animal and Plant Populations
Author: Richard Frankham
Publisher:
ISBN: 0198783418
Category : Nature
Languages : en
Pages : 197
Book Description
The habitats of most species have been fragmented by human actions, isolating small populations that consequently develop genetic problems. Millions of small, isolated, fragmented populations are likely suffering from inbreeding depression and loss of genetic diversity, greatly increasing their risk of extinction. Crossing between populations is required to reverse these effects, but managers rarely do so. A key reason for such inaction is that managers are often advised to manage populations in isolation whenever molecular genetic methods indicate genetic differences among them. Following this advice will often doom small populations to extinction when the habitat fragmentation and genetic differences were caused by human activities. A paradigm shift is required whereby evidence of genetic differentiation among populations is a trigger to ask whether any populations are suffering genetic problems, and if so, whether they can be rescued by augmenting gene flow. Consequently, there is now an urgent need for an authoritative practical guide to facilitate this paradigm shift in genetic management of fragmented populations.
Publisher:
ISBN: 0198783418
Category : Nature
Languages : en
Pages : 197
Book Description
The habitats of most species have been fragmented by human actions, isolating small populations that consequently develop genetic problems. Millions of small, isolated, fragmented populations are likely suffering from inbreeding depression and loss of genetic diversity, greatly increasing their risk of extinction. Crossing between populations is required to reverse these effects, but managers rarely do so. A key reason for such inaction is that managers are often advised to manage populations in isolation whenever molecular genetic methods indicate genetic differences among them. Following this advice will often doom small populations to extinction when the habitat fragmentation and genetic differences were caused by human activities. A paradigm shift is required whereby evidence of genetic differentiation among populations is a trigger to ask whether any populations are suffering genetic problems, and if so, whether they can be rescued by augmenting gene flow. Consequently, there is now an urgent need for an authoritative practical guide to facilitate this paradigm shift in genetic management of fragmented populations.
Genetics, Demography and Viability of Fragmented Populations
Author: Andrew G. Young
Publisher: Cambridge University Press
ISBN: 0521782074
Category : Nature
Languages : en
Pages : 456
Book Description
A detailed introduction to the genetic and demographic issues relevant to the conservation of fragmented populations.
Publisher: Cambridge University Press
ISBN: 0521782074
Category : Nature
Languages : en
Pages : 456
Book Description
A detailed introduction to the genetic and demographic issues relevant to the conservation of fragmented populations.
Conservation Genetics [symposium on Conservation Genetics Held in May 1993, Aarhus, Denmark]
Author: Volker Loeschcke
Publisher: Springer Science & Business Media
ISBN: 9783764329396
Category : Nature
Languages : en
Pages : 456
Book Description
I: Genetics and conservation biology.- Introductory remarks: Genetics and conservation biology.- Global issues of genetic diversity.- II: Genetic variation and fitness.- Introductory remarks.- Genetic variation and fitness: Conservation lessons from pines.- Genetic diversity and fitness in small populations.- Mutation load depending on variance in reproductive success and mating system.- Extinction risk by mutational meltdown: Synergistic effects between population regulation and genetic drift.- III: Inbreeding, population and social structure.- Introductory remarks.- Inbreeding: One word, several meanings, much confusion.- The genetic structure of metapopulations and conservation biology.- Effects of inbreeding in small plant populations: Expectations and implications for conservation.- The interaction of inbreeding depression and environmental stochasticity in the risk of extinction of small populations.- Genetic structure of a population with social structure and migration.- Guidelines in conservation genetics and the use of the population cage experiments with butterflies to investigate the effects of genetic drift and inbreeding.- IV: Molecular approaches to conservation.- Introductory remarks.- Rare alleles, MHC and captive breeding.- Andean tapaculos of the genus Scytalopus (Aves, Rhinocryptidae): A study of speciation using DNA sequence data.- Genetic distances and the setting of conservation priorities.- Multi-species risk analysis, species evaluation and biodiversity conservation.- V: Case studies.- Introductory remarks.- On genetic erosion and population extinction in plants: A case study in Scabiosa columbaria and Salvia pratensis.- Effects of releasing hatchery-reared brown trout to wild trout populations.- Genetics and demography of rare plants and patchily distributed colonizing species.- Response to environmental change: Genetic variation and fitness in Drosophila buzzatii following temperature stress.- Alternative life histories and genetic conservation.- The principles of population monitoring for conservation genetics.- VI: Genetic resource conservation.- Introductory remarks.- Optimal sampling strategies for core collections of plant genetic resources.- Conservation genetics and the role of botanical gardens.- Animal breeding and conservation genetics.- Scenarios.- Introductory remarks.- A: The genetic monitoring of primate populations for their conservation.- B: Heavy metal tolerance, plant evolution and restoration ecology.- C: Genetic conservation and plant agriculture.- D: Fragmented plant populations and their lost interactions.- E: Host-pathogen coevolution under in situ conservation.- Concluding remarks.
Publisher: Springer Science & Business Media
ISBN: 9783764329396
Category : Nature
Languages : en
Pages : 456
Book Description
I: Genetics and conservation biology.- Introductory remarks: Genetics and conservation biology.- Global issues of genetic diversity.- II: Genetic variation and fitness.- Introductory remarks.- Genetic variation and fitness: Conservation lessons from pines.- Genetic diversity and fitness in small populations.- Mutation load depending on variance in reproductive success and mating system.- Extinction risk by mutational meltdown: Synergistic effects between population regulation and genetic drift.- III: Inbreeding, population and social structure.- Introductory remarks.- Inbreeding: One word, several meanings, much confusion.- The genetic structure of metapopulations and conservation biology.- Effects of inbreeding in small plant populations: Expectations and implications for conservation.- The interaction of inbreeding depression and environmental stochasticity in the risk of extinction of small populations.- Genetic structure of a population with social structure and migration.- Guidelines in conservation genetics and the use of the population cage experiments with butterflies to investigate the effects of genetic drift and inbreeding.- IV: Molecular approaches to conservation.- Introductory remarks.- Rare alleles, MHC and captive breeding.- Andean tapaculos of the genus Scytalopus (Aves, Rhinocryptidae): A study of speciation using DNA sequence data.- Genetic distances and the setting of conservation priorities.- Multi-species risk analysis, species evaluation and biodiversity conservation.- V: Case studies.- Introductory remarks.- On genetic erosion and population extinction in plants: A case study in Scabiosa columbaria and Salvia pratensis.- Effects of releasing hatchery-reared brown trout to wild trout populations.- Genetics and demography of rare plants and patchily distributed colonizing species.- Response to environmental change: Genetic variation and fitness in Drosophila buzzatii following temperature stress.- Alternative life histories and genetic conservation.- The principles of population monitoring for conservation genetics.- VI: Genetic resource conservation.- Introductory remarks.- Optimal sampling strategies for core collections of plant genetic resources.- Conservation genetics and the role of botanical gardens.- Animal breeding and conservation genetics.- Scenarios.- Introductory remarks.- A: The genetic monitoring of primate populations for their conservation.- B: Heavy metal tolerance, plant evolution and restoration ecology.- C: Genetic conservation and plant agriculture.- D: Fragmented plant populations and their lost interactions.- E: Host-pathogen coevolution under in situ conservation.- Concluding remarks.
Genetics and Conservation
Author: Christine M. Schonewald
Publisher:
ISBN: 9781930665866
Category : Nature
Languages : en
Pages : 722
Book Description
From the 2003 Foreword:
Publisher:
ISBN: 9781930665866
Category : Nature
Languages : en
Pages : 722
Book Description
From the 2003 Foreword:
Genetic Management of Fragmented Animal and Plant Populations
Author: Richard Frankham
Publisher:
ISBN: 9780191826313
Category : SCIENCE
Languages : en
Pages : 401
Book Description
One of the greatest unmet issues in conservation biology is the genetic management of fragmented populations of numerous animal and plant species. Many populations are going extinct unnecessarily for genetic reasons so there is now urgent need for an authoritative textbook on the rational genetic management of fragmented populations.
Publisher:
ISBN: 9780191826313
Category : SCIENCE
Languages : en
Pages : 401
Book Description
One of the greatest unmet issues in conservation biology is the genetic management of fragmented populations of numerous animal and plant species. Many populations are going extinct unnecessarily for genetic reasons so there is now urgent need for an authoritative textbook on the rational genetic management of fragmented populations.
A Practical Guide for Genetic Management of Fragmented Animal and Plant Populations
Author: Richard Frankham
Publisher: Oxford University Press
ISBN: 0191086088
Category : Science
Languages : en
Pages : 197
Book Description
The habitats of most species have been fragmented by human actions, isolating small populations that consequently develop genetic problems. Millions of small, isolated, fragmented populations are likely suffering from inbreeding depression and loss of genetic diversity, greatly increasing their risk of extinction. Crossing between populations is required to reverse these effects, but managers rarely do so. A key reason for such inaction is that managers are often advised to manage populations in isolation whenever molecular genetic methods indicate genetic differences among them. Following this advice will often doom small populations to extinction when the habitat fragmentation and genetic differences were caused by human activities. A paradigm shift is required whereby evidence of genetic differentiation among populations is a trigger to ask whether any populations are suffering genetic problems, and if so, whether they can be rescued by augmenting gene flow. Consequently, there is now an urgent need for an authoritative practical guide to facilitate this paradigm shift in genetic management of fragmented populations.
Publisher: Oxford University Press
ISBN: 0191086088
Category : Science
Languages : en
Pages : 197
Book Description
The habitats of most species have been fragmented by human actions, isolating small populations that consequently develop genetic problems. Millions of small, isolated, fragmented populations are likely suffering from inbreeding depression and loss of genetic diversity, greatly increasing their risk of extinction. Crossing between populations is required to reverse these effects, but managers rarely do so. A key reason for such inaction is that managers are often advised to manage populations in isolation whenever molecular genetic methods indicate genetic differences among them. Following this advice will often doom small populations to extinction when the habitat fragmentation and genetic differences were caused by human activities. A paradigm shift is required whereby evidence of genetic differentiation among populations is a trigger to ask whether any populations are suffering genetic problems, and if so, whether they can be rescued by augmenting gene flow. Consequently, there is now an urgent need for an authoritative practical guide to facilitate this paradigm shift in genetic management of fragmented populations.
Conservation and the Genetics of Populations
Author: Fred W. Allendorf
Publisher: John Wiley & Sons
ISBN: 0470671459
Category : Science
Languages : en
Pages : 636
Book Description
Loss of biodiversity is among the greatest problems facing the world today. Conservation and the Genetics of Populations gives a comprehensive overview of the essential background, concepts, and tools needed to understand how genetic information can be used to conserve species threatened with extinction, and to manage species of ecological or commercial importance. New molecular techniques, statistical methods, and computer programs, genetic principles, and methods are becoming increasingly useful in the conservation of biological diversity. Using a balance of data and theory, coupled with basic and applied research examples, this book examines genetic and phenotypic variation in natural populations, the principles and mechanisms of evolutionary change, the interpretation of genetic data from natural populations, and how these can be applied to conservation. The book includes examples from plants, animals, and microbes in wild and captive populations. This second edition contains new chapters on Climate Change and Exploited Populations as well as new sections on genomics, genetic monitoring, emerging diseases, metagenomics, and more. One-third of the references in this edition were published after the first edition. Each of the 22 chapters and the statistical appendix have a Guest Box written by an expert in that particular topic (including James Crow, Louis Bernatchez, Loren Rieseberg, Rick Shine, and Lisette Waits). This book is essential for advanced undergraduate and graduate students of conservation genetics, natural resource management, and conservation biology, as well as professional conservation biologists working for wildlife and habitat management agencies. Additional resources for this book can be found at: www.wiley.com/go/allendorf/populations.
Publisher: John Wiley & Sons
ISBN: 0470671459
Category : Science
Languages : en
Pages : 636
Book Description
Loss of biodiversity is among the greatest problems facing the world today. Conservation and the Genetics of Populations gives a comprehensive overview of the essential background, concepts, and tools needed to understand how genetic information can be used to conserve species threatened with extinction, and to manage species of ecological or commercial importance. New molecular techniques, statistical methods, and computer programs, genetic principles, and methods are becoming increasingly useful in the conservation of biological diversity. Using a balance of data and theory, coupled with basic and applied research examples, this book examines genetic and phenotypic variation in natural populations, the principles and mechanisms of evolutionary change, the interpretation of genetic data from natural populations, and how these can be applied to conservation. The book includes examples from plants, animals, and microbes in wild and captive populations. This second edition contains new chapters on Climate Change and Exploited Populations as well as new sections on genomics, genetic monitoring, emerging diseases, metagenomics, and more. One-third of the references in this edition were published after the first edition. Each of the 22 chapters and the statistical appendix have a Guest Box written by an expert in that particular topic (including James Crow, Louis Bernatchez, Loren Rieseberg, Rick Shine, and Lisette Waits). This book is essential for advanced undergraduate and graduate students of conservation genetics, natural resource management, and conservation biology, as well as professional conservation biologists working for wildlife and habitat management agencies. Additional resources for this book can be found at: www.wiley.com/go/allendorf/populations.
Introduction to Conservation Genetics
Author: Richard Frankham
Publisher: Cambridge University Press
ISBN: 0521878470
Category : Conservation of natural resources
Languages : en
Pages : 643
Book Description
This impressive author team brings the wealth of advances in conservation genetics into the new edition of this introductory text, including new chapters on population genomics and genetic issues in introduced and invasive species. They continue the strong learning features for students - main points in the margin, chapter summaries, vital support with the mathematics, and further reading - and now guide the reader to software and databases. Many new references reflect the expansion of this field. With examples from mammals, birds ...
Publisher: Cambridge University Press
ISBN: 0521878470
Category : Conservation of natural resources
Languages : en
Pages : 643
Book Description
This impressive author team brings the wealth of advances in conservation genetics into the new edition of this introductory text, including new chapters on population genomics and genetic issues in introduced and invasive species. They continue the strong learning features for students - main points in the margin, chapter summaries, vital support with the mathematics, and further reading - and now guide the reader to software and databases. Many new references reflect the expansion of this field. With examples from mammals, birds ...