Genetic Analysis of the Sorghum Bicolor Stay-green Drought Tolerance Trait

Genetic Analysis of the Sorghum Bicolor Stay-green Drought Tolerance Trait PDF Author: Karen Ruth Harris
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Sorghum (Sorghum bicolor [L.] Moench) is the fifth most economically important cereal grown worldwide and is a source of food, feed, fiber and fuel. Sorghum, a C4 grass and a close relative to sugarcane, is adapted to hot, dry adverse environments. Some genotypes of sorghum called stay-green have delayed leaf senescence during grain ripening under drought stress conditions which allows normal grain filling whereas most sorghum lines senesce early under post-anthesis drought. Eight sources of stay-green have been identified in the sorghum germplasm collection, most originating from Sudan and Ethiopia. The diversity of the eight sources of staygreen was analyzed using 55 simple sequence repeats (SSR) markers with genome coverage. This analysis showed that the sources of stay-green are quite diverse and can be divided into five groups based on race or working group. Three sources of stay-green have been used to identify 12 major quantitative trait loci (QTL) that modulate this trait. The origin of favorable alleles for stay-green was traced backward to ancestral lines and forward into breeding materials derived from stay-green germplasm. The analysis of the origin of favorable alleles for stay-green helped explain why subsets of stay-green QTL were identified in different studies and provided evidence that there may be more than one favorable allele in the sorghum germplasm for several of the stay-green QTL. Analysis of stay-green breeding lines from three public sorghum-breeding programs revealed that one of the main QTL identified in mapping studies was not being used in the breeding programs (0/13), most likely due to its association with an allele for lemon yellow seeds. In addition, a subset of the regions containing favorable alleles for staygreen from the genotype BTx642 were over represented in stay-green breeding lines. Nearly isogenic lines containing favorable alleles from BTx642 for Stg1, Stg2, Stg3, and Stg4 in a RTx7000 (senescent) background were characterized and each NIL was shown to exhibit a stay-green phenotype. Based in part on this information, fine-mapping of Stg1 was undertaken by crossing the Stg1 NIL to RTx7000. Overall, these results revealed the origin of favorable alleles for stay-green and the current utilization of alleles for stay-green in public breeding programs. In addition, this study identified additional stay-green sources that could be used for further QTL analysis and highlighted the genetic complexity of the stay-green trait.

Genetic Analysis of the Sorghum Bicolor Stay-green Drought Tolerance Trait

Genetic Analysis of the Sorghum Bicolor Stay-green Drought Tolerance Trait PDF Author: Karen Ruth Harris
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Sorghum (Sorghum bicolor [L.] Moench) is the fifth most economically important cereal grown worldwide and is a source of food, feed, fiber and fuel. Sorghum, a C4 grass and a close relative to sugarcane, is adapted to hot, dry adverse environments. Some genotypes of sorghum called stay-green have delayed leaf senescence during grain ripening under drought stress conditions which allows normal grain filling whereas most sorghum lines senesce early under post-anthesis drought. Eight sources of stay-green have been identified in the sorghum germplasm collection, most originating from Sudan and Ethiopia. The diversity of the eight sources of staygreen was analyzed using 55 simple sequence repeats (SSR) markers with genome coverage. This analysis showed that the sources of stay-green are quite diverse and can be divided into five groups based on race or working group. Three sources of stay-green have been used to identify 12 major quantitative trait loci (QTL) that modulate this trait. The origin of favorable alleles for stay-green was traced backward to ancestral lines and forward into breeding materials derived from stay-green germplasm. The analysis of the origin of favorable alleles for stay-green helped explain why subsets of stay-green QTL were identified in different studies and provided evidence that there may be more than one favorable allele in the sorghum germplasm for several of the stay-green QTL. Analysis of stay-green breeding lines from three public sorghum-breeding programs revealed that one of the main QTL identified in mapping studies was not being used in the breeding programs (0/13), most likely due to its association with an allele for lemon yellow seeds. In addition, a subset of the regions containing favorable alleles for staygreen from the genotype BTx642 were over represented in stay-green breeding lines. Nearly isogenic lines containing favorable alleles from BTx642 for Stg1, Stg2, Stg3, and Stg4 in a RTx7000 (senescent) background were characterized and each NIL was shown to exhibit a stay-green phenotype. Based in part on this information, fine-mapping of Stg1 was undertaken by crossing the Stg1 NIL to RTx7000. Overall, these results revealed the origin of favorable alleles for stay-green and the current utilization of alleles for stay-green in public breeding programs. In addition, this study identified additional stay-green sources that could be used for further QTL analysis and highlighted the genetic complexity of the stay-green trait.

Molecular Genetic Analysis of Stay-green, a Post-flowering Drought Resistance Trait in Grain Sorghum (Sorghum Bicolor L. Moench)

Molecular Genetic Analysis of Stay-green, a Post-flowering Drought Resistance Trait in Grain Sorghum (Sorghum Bicolor L. Moench) PDF Author: Oswald R. Crasta
Publisher:
ISBN:
Category : Sorghum
Languages : en
Pages : 208

Get Book Here

Book Description


Genomic Mapping for Grain Yield, Stay Green, and Grain Quality Traits in Sorghum

Genomic Mapping for Grain Yield, Stay Green, and Grain Quality Traits in Sorghum PDF Author: Sivakumar Sukumaran
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Knowledge of the genetic bases of grain quality traits will complement plant breeding efforts to improve the end use value of sorghum (Sorghum bicolor (L.) Moench). The objective of the first experiment was to assess marker-trait associations for 10 grain quality traits through candidate gene association mapping on a diverse panel of 300 sorghum accessions. The 10 grain quality traits were measured using the single kernel characterization system (SKCS) and near-infrared reflectance spectroscopy (NIRS). The analysis of the accessions through 1,290 genome-wide single nucleotide polymorphisms (SNPs) separated the panel into five subpopulations that corresponded to three major sorghum races (durra, kafir, and caudatum), one intermediate race (guinea-caudatum), and one working group (zerazera/caudatum). Association analysis between 333 SNPs in candidate genes/loci and grain quality traits resulted in eight significant marker-trait associations. A SNP in starch synthase IIa (SSIIa) gene was associated with kernel hardness (KH) with a likelihood ratio-based R2 (R[subscript]L[subscript]R2) value of 0.08. SNPs in starch synthase (SSIIb) gene (R[subscript]L[subscript]R2 = 0.10) and loci pSB1120 (R[subscript]L[subscript]R2 = 0.09) was associated with starch content. Sorghum is a crop well adapted to the semi arid regions of the world and my harbor genes for drought tolerance. The objective of second experiment was to identify quantitative trait loci (QTLs) for yield potential and drought tolerance. From a cross between Tx436 (food grain type) and 00MN7645 (drought tolerant) 248 recombinant inbred lines (RILs) was developed. Multi-location trials were conducted in 8 environments to evaluate agronomic performance of the RILs under favorable and drought stress conditions. The 248 RILs and their parents were genotyped by genotyping-by-sequencing (GBS). A subset of 800 SNPs was used for linkage map construction and QTL detection. Composite interval mapping identified a major QTLs for grain yield in chromosome 8 and QTL for flowering time in chromosome 9 under favorable conditions. Three major QTLs were detected for grain yield in chromosomes 1, 6, and 8 and two flowering time QTLs on chromosome 1 under drought conditions. Six QTLs were identified for stay green: two on chromosome 4; one each on chromosome 5, 6, 7, and 10 under drought conditions.

Genetics, Genomics and Breeding of Sorghum

Genetics, Genomics and Breeding of Sorghum PDF Author: Yi-Hong Wang
Publisher: CRC Press
ISBN: 1482210088
Category : Science
Languages : en
Pages : 368

Get Book Here

Book Description
Sorghum is one of the hardiest crop plants in modern agriculture and also one of the most versatile. Its seeds provide calorie for food and feed, stalks for building and industrial materials and its juice for syrup. This book provides an in-depth review of the cutting-edge knowledge in sorghum genetics and its applications in sorghum breeding. Each chapter is authored by specialists in their fields to report the latest trends and findings. The book showcases the definitive value of sorghum as a model system to study the genetic basis of crop productivity and stress tolerance and will provide a foundation for future studies in sorghum genetics, genomics, and breeding.

Genetic Variability for Drought in Various Sorghum Genotypes

Genetic Variability for Drought in Various Sorghum Genotypes PDF Author: Malik Muhammad Khan
Publisher: LAP Lambert Academic Publishing
ISBN: 9783847343400
Category :
Languages : en
Pages : 80

Get Book Here

Book Description
Drought is the most common adverse environmental condition that can seriously reduce crop productivity. Increasing crop resistance to drought stress would be the most economical approach to improve agricultural productivity and to reduce agricultural use of fresh water resources. As a result, understanding the drought tolerance and breeding for drought resistant crop plants has been the major goal of plant breeders. Sorghum is well-known for its capacity to tolerate conditions of limited moisture and to produce during periods of extended drought. Twenty sorghum (Sorghum bicolor L. Moench) genotypes with known drought tolerance traits were used in this study. The present study will be conducted to evaluate the genetic variability for drought tolerance in sorghum genotypes at molecular level.

Characterization of Grain Sorghum for Physiological and Yield Traits Associated with Drought Tolerance

Characterization of Grain Sorghum for Physiological and Yield Traits Associated with Drought Tolerance PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Grain sorghum (Sorghum bicolor L. Moench) is the fourth most important cereal crop grown throughout the semi-arid regions of the world. It is a staple food crop in Africa and Asia, while it is an important feed crop in the United States (US). More recently it is increasingly becoming important as a potential bioenergy feedstock crop around the world. The state of Kansas is the largest producer of grain sorghum in the US and contributes 40% of the total production. Drought is one of the major environmental factors limiting sorghum production in the semi-arid regions of the US, Asia and Africa. It is estimated that global crop losses due to drought stress exceed $10 billion annually. In crop production, drought stress can be classified into pre- or post-flowering. Even though the world collections of sorghum contain over 35,000 accessions, the genetic base currently used in breeding programs is very small (about 3%). Thus, it is important to identify diverse breeding lines for crop improvement. The diversity (association) panel consisting of 300 sorghum lines from all over the world was assembled for trait evaluation and association mapping. In this research these lines were grouped into the five major races (Figure 1) and 10 intermediate races of sorghum. The objectives of the research are to: (i) quantify the performance of the diversity panel under field conditions in Kansas, (ii) identify critical physiological traits affected by drought at both pre- and post-flowering stages of sorghum development, (iii) identify the most sensitive stage to drought stress during the reproductive phase of sorghum development and, (iv) test the feasibility of using a chlorophyll fluorescence assay (CVA) as a tool for identifying stay-green lines in grain sorghum during early stages of crop development. Field experiments were conducted in 2006 and 2007 in two locations in Kansas (Manhattan and Hays) under rain fed and irrigated conditions for the association panel. Objectives (iii) and (iv) were achieved with controlled environment experiments conducted in the greenhouse at the agronomy department, Kansas State University in 2006 and 2007. Results showed that there was large genetic variability among and within different races in the diversity panel for growth, physiological traits and yield components. Some genotypes showed yield stability across the different environments that were investigated. Drought significantly decreased seed number and harvest index across genotypes and races. In grain sorghum the period prior to flowering (panicle initiation) was the most sensitive stage to drought stress, in terms of its effect on seed-set, during reproductive development. A cell viability assay showed that there were significant differences in the loss of cell viability between leaf sample of stay green and non-stay green genotypes when leaf samples are collected in the morning and subjected to high respiratory demand. Therefore the chlorophyll fluorescence assay has potential as a tool for stay green trait screening at early stages of growth in grain sorghum.

Integrated Analysis of Phenology, Traits, and QTL in the Drought Tolerant Sorghum Genotypes BTx642 and RTx7000

Integrated Analysis of Phenology, Traits, and QTL in the Drought Tolerant Sorghum Genotypes BTx642 and RTx7000 PDF Author: Brock D. Weers
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The growth and development of two sorghum drought tolerant genotypes BTx642 (post-flowering drought tolerant, "stay green") and RTx7000 (pre-flowering drought tolerant) were characterized and compared. Differences in phenology and the growth and development of leaves and stalks were identified that could contribute to variation in shoot biomass, grain yield and response to water deficit. An F12 recombinant inbred line (RIL) population derived from the two parents was genotyped using the Illumina Genome Analyzer II platform and the information used to generate a genetic map useful for analysis of quantitative trait loci (QTL). Seventy-two different traits were measured in the RIL population at anthesis and at grain maturity. Plants were grown in well-watered environments in greenhouse conditions and in field conditions near College Station, TX in 2008-2010. QTL mapping was used to analyze the genetic basis of trait variation in the population and to detect associations between traits. A total of 477 QTL were identified that in combination modulate leaf size (length, width, and area), shoot biomass accumulation (shoot, stalk, stem, leaf, and leaf sheath), panicle weight, root size and architecture (length, surface area, and volume, number of tips, forks and nodal roots, and root biomass), stalk and stem length, and flowering time. Six flowering time QTL were identified and variation in time to anthesis affected the expression of several other traits including leaf size and biomass accumulation. However, QTL infrequently had an impact on traits associated with different organs. The specificity observed is consistent with independent genetic control of traits associated with leaves, stems and roots. Nine QTL that modulated shoot biomass accumulation were detected that were not affected by flowering time. Of these, four shoot biomass QTL co-localized with leaf size traits. Eight QTL for panicle biomass were detected with two coincident with QTL for upper leaf size. A QTL for leaf width at anthesis was found to co-localize with a stay green locus.

Genetic Control of Post-flowering Drought Tolerance (stay Green) in Sorghum

Genetic Control of Post-flowering Drought Tolerance (stay Green) in Sorghum PDF Author: Richard Sikuku Walulu
Publisher:
ISBN:
Category : Sorghum
Languages : en
Pages : 158

Get Book Here

Book Description


Sorghum

Sorghum PDF Author: Ignacio A. Ciampitti
Publisher: John Wiley & Sons
ISBN: 0891186271
Category : Technology & Engineering
Languages : en
Pages : 528

Get Book Here

Book Description
Sorghum is among the top five cereals and one of the key crops in global food security efforts. Sorghum is a resilient crop under high-stress environments, ensuring productivity and access to food when other crops fail. Scientists see the potential of sorghum as a main staple food in a future challenged by climate change. The contributors provide a comprehensive review of sorghum knowledge. The discussion covers genetic improvements, development of new hybrids, biotechnology, and physiological modifications. Production topics include water and nutrient management, rotations, and pest control. Final end uses, sorghum as a bioenergy crop, markets, and the future of sorghum are presented. IN PRESS! This book is being published according to the “Just Published” model, with more chapters to be published online as they are completed.

Genomics-Assisted Crop Improvement

Genomics-Assisted Crop Improvement PDF Author: Rajeev K. Varshney
Publisher: Springer Science & Business Media
ISBN: 1402062974
Category : Technology & Engineering
Languages : en
Pages : 517

Get Book Here

Book Description
This superb volume provides a critical assessment of genomics tools and approaches for crop breeding. Volume 1 presents the status and availability of genomic resources and platforms, and also devises strategies and approaches for effectively exploiting genomics research. Volume 2 goes into detail on a number of case studies of several important crop and plant species that summarize both the achievements and limitations of genomics research for crop improvement.