Author: Mark Goldburd
Publisher:
ISBN: 9780996889728
Category :
Languages : en
Pages : 106
Book Description
Generalized Linear Models for Insurance Rating
Author: Mark Goldburd
Publisher:
ISBN: 9780996889728
Category :
Languages : en
Pages : 106
Book Description
Publisher:
ISBN: 9780996889728
Category :
Languages : en
Pages : 106
Book Description
Generalized Linear Models for Insurance Data
Author: Piet de Jong
Publisher: Cambridge University Press
ISBN: 1139470477
Category : Business & Economics
Languages : en
Pages : 207
Book Description
This is the only book actuaries need to understand generalized linear models (GLMs) for insurance applications. GLMs are used in the insurance industry to support critical decisions. Until now, no text has introduced GLMs in this context or addressed the problems specific to insurance data. Using insurance data sets, this practical, rigorous book treats GLMs, covers all standard exponential family distributions, extends the methodology to correlated data structures, and discusses recent developments which go beyond the GLM. The issues in the book are specific to insurance data, such as model selection in the presence of large data sets and the handling of varying exposure times. Exercises and data-based practicals help readers to consolidate their skills, with solutions and data sets given on the companion website. Although the book is package-independent, SAS code and output examples feature in an appendix and on the website. In addition, R code and output for all the examples are provided on the website.
Publisher: Cambridge University Press
ISBN: 1139470477
Category : Business & Economics
Languages : en
Pages : 207
Book Description
This is the only book actuaries need to understand generalized linear models (GLMs) for insurance applications. GLMs are used in the insurance industry to support critical decisions. Until now, no text has introduced GLMs in this context or addressed the problems specific to insurance data. Using insurance data sets, this practical, rigorous book treats GLMs, covers all standard exponential family distributions, extends the methodology to correlated data structures, and discusses recent developments which go beyond the GLM. The issues in the book are specific to insurance data, such as model selection in the presence of large data sets and the handling of varying exposure times. Exercises and data-based practicals help readers to consolidate their skills, with solutions and data sets given on the companion website. Although the book is package-independent, SAS code and output examples feature in an appendix and on the website. In addition, R code and output for all the examples are provided on the website.
Non-Life Insurance Pricing with Generalized Linear Models
Author: Esbjörn Ohlsson
Publisher: Springer Science & Business Media
ISBN: 3642107915
Category : Mathematics
Languages : en
Pages : 181
Book Description
Non-life insurance pricing is the art of setting the price of an insurance policy, taking into consideration varoius properties of the insured object and the policy holder. Introduced by British actuaries generalized linear models (GLMs) have become today a the standard aproach for tariff analysis. The book focuses on methods based on GLMs that have been found useful in actuarial practice and provides a set of tools for a tariff analysis. Basic theory of GLMs in a tariff analysis setting is presented with useful extensions of standarde GLM theory that are not in common use. The book meets the European Core Syllabus for actuarial education and is written for actuarial students as well as practicing actuaries. To support reader real data of some complexity are provided at www.math.su.se/GLMbook.
Publisher: Springer Science & Business Media
ISBN: 3642107915
Category : Mathematics
Languages : en
Pages : 181
Book Description
Non-life insurance pricing is the art of setting the price of an insurance policy, taking into consideration varoius properties of the insured object and the policy holder. Introduced by British actuaries generalized linear models (GLMs) have become today a the standard aproach for tariff analysis. The book focuses on methods based on GLMs that have been found useful in actuarial practice and provides a set of tools for a tariff analysis. Basic theory of GLMs in a tariff analysis setting is presented with useful extensions of standarde GLM theory that are not in common use. The book meets the European Core Syllabus for actuarial education and is written for actuarial students as well as practicing actuaries. To support reader real data of some complexity are provided at www.math.su.se/GLMbook.
Predictive Modeling Applications in Actuarial Science: Volume 2, Case Studies in Insurance
Author: Edward W. Frees
Publisher: Cambridge University Press
ISBN: 1316720527
Category : Business & Economics
Languages : en
Pages : 337
Book Description
Predictive modeling uses data to forecast future events. It exploits relationships between explanatory variables and the predicted variables from past occurrences to predict future outcomes. Forecasting financial events is a core skill that actuaries routinely apply in insurance and other risk-management applications. Predictive Modeling Applications in Actuarial Science emphasizes life-long learning by developing tools in an insurance context, providing the relevant actuarial applications, and introducing advanced statistical techniques that can be used to gain a competitive advantage in situations with complex data. Volume 2 examines applications of predictive modeling. Where Volume 1 developed the foundations of predictive modeling, Volume 2 explores practical uses for techniques, focusing on property and casualty insurance. Readers are exposed to a variety of techniques in concrete, real-life contexts that demonstrate their value and the overall value of predictive modeling, for seasoned practicing analysts as well as those just starting out.
Publisher: Cambridge University Press
ISBN: 1316720527
Category : Business & Economics
Languages : en
Pages : 337
Book Description
Predictive modeling uses data to forecast future events. It exploits relationships between explanatory variables and the predicted variables from past occurrences to predict future outcomes. Forecasting financial events is a core skill that actuaries routinely apply in insurance and other risk-management applications. Predictive Modeling Applications in Actuarial Science emphasizes life-long learning by developing tools in an insurance context, providing the relevant actuarial applications, and introducing advanced statistical techniques that can be used to gain a competitive advantage in situations with complex data. Volume 2 examines applications of predictive modeling. Where Volume 1 developed the foundations of predictive modeling, Volume 2 explores practical uses for techniques, focusing on property and casualty insurance. Readers are exposed to a variety of techniques in concrete, real-life contexts that demonstrate their value and the overall value of predictive modeling, for seasoned practicing analysts as well as those just starting out.
Modern Actuarial Risk Theory
Author: Rob Kaas
Publisher: Springer Science & Business Media
ISBN: 3540867368
Category : Business & Economics
Languages : en
Pages : 394
Book Description
Modern Actuarial Risk Theory contains what every actuary needs to know about non-life insurance mathematics. It starts with the standard material like utility theory, individual and collective model and basic ruin theory. Other topics are risk measures and premium principles, bonus-malus systems, ordering of risks and credibility theory. It also contains some chapters about Generalized Linear Models, applied to rating and IBNR problems. As to the level of the mathematics, the book would fit in a bachelors or masters program in quantitative economics or mathematical statistics. This second and.
Publisher: Springer Science & Business Media
ISBN: 3540867368
Category : Business & Economics
Languages : en
Pages : 394
Book Description
Modern Actuarial Risk Theory contains what every actuary needs to know about non-life insurance mathematics. It starts with the standard material like utility theory, individual and collective model and basic ruin theory. Other topics are risk measures and premium principles, bonus-malus systems, ordering of risks and credibility theory. It also contains some chapters about Generalized Linear Models, applied to rating and IBNR problems. As to the level of the mathematics, the book would fit in a bachelors or masters program in quantitative economics or mathematical statistics. This second and.
Pricing in General Insurance
Author: Pietro Parodi
Publisher: CRC Press
ISBN: 1466581441
Category : Business & Economics
Languages : en
Pages : 590
Book Description
Based on the syllabus of the actuarial industry course on general insurance pricing — with additional material inspired by the author’s own experience as a practitioner and lecturer — Pricing in General Insurance presents pricing as a formalised process that starts with collecting information about a particular policyholder or risk and ends with a commercially informed rate. The main strength of this approach is that it imposes a reasonably linear narrative on the material and allows the reader to see pricing as a story and go back to the big picture at any time, putting things into context. Written with both the student and the practicing actuary in mind, this pragmatic textbook and professional reference: Complements the standard pricing methods with a description of techniques devised for pricing specific products (e.g., non-proportional reinsurance and property insurance) Discusses methods applied in personal lines when there is a large amount of data and policyholders can be charged depending on many rating factors Addresses related topics such as how to measure uncertainty, incorporate external information, model dependency, and optimize the insurance structure Provides case studies, worked-out examples, exercises inspired by past exam questions, and step-by-step methods for dealing concretely with specific situations Pricing in General Insurance delivers a practical introduction to all aspects of general insurance pricing, covering data preparation, frequency analysis, severity analysis, Monte Carlo simulation for the calculation of aggregate losses, burning cost analysis, and more.
Publisher: CRC Press
ISBN: 1466581441
Category : Business & Economics
Languages : en
Pages : 590
Book Description
Based on the syllabus of the actuarial industry course on general insurance pricing — with additional material inspired by the author’s own experience as a practitioner and lecturer — Pricing in General Insurance presents pricing as a formalised process that starts with collecting information about a particular policyholder or risk and ends with a commercially informed rate. The main strength of this approach is that it imposes a reasonably linear narrative on the material and allows the reader to see pricing as a story and go back to the big picture at any time, putting things into context. Written with both the student and the practicing actuary in mind, this pragmatic textbook and professional reference: Complements the standard pricing methods with a description of techniques devised for pricing specific products (e.g., non-proportional reinsurance and property insurance) Discusses methods applied in personal lines when there is a large amount of data and policyholders can be charged depending on many rating factors Addresses related topics such as how to measure uncertainty, incorporate external information, model dependency, and optimize the insurance structure Provides case studies, worked-out examples, exercises inspired by past exam questions, and step-by-step methods for dealing concretely with specific situations Pricing in General Insurance delivers a practical introduction to all aspects of general insurance pricing, covering data preparation, frequency analysis, severity analysis, Monte Carlo simulation for the calculation of aggregate losses, burning cost analysis, and more.
Regression Modeling with Actuarial and Financial Applications
Author: Edward W. Frees
Publisher: Cambridge University Press
ISBN: 0521760119
Category : Business & Economics
Languages : en
Pages : 585
Book Description
This book teaches multiple regression and time series and how to use these to analyze real data in risk management and finance.
Publisher: Cambridge University Press
ISBN: 0521760119
Category : Business & Economics
Languages : en
Pages : 585
Book Description
This book teaches multiple regression and time series and how to use these to analyze real data in risk management and finance.
Foundations of Linear and Generalized Linear Models
Author: Alan Agresti
Publisher: John Wiley & Sons
ISBN: 1118730038
Category : Mathematics
Languages : en
Pages : 471
Book Description
A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.
Publisher: John Wiley & Sons
ISBN: 1118730038
Category : Mathematics
Languages : en
Pages : 471
Book Description
A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.
Statistical and Probabilistic Methods in Actuarial Science
Author: Philip J. Boland
Publisher: CRC Press
ISBN: 158488696X
Category : Business & Economics
Languages : en
Pages : 368
Book Description
Statistical and Probabilistic Methods in Actuarial Science covers many of the diverse methods in applied probability and statistics for students aspiring to careers in insurance, actuarial science, and finance. The book builds on students' existing knowledge of probability and statistics by establishing a solid and thorough understanding of
Publisher: CRC Press
ISBN: 158488696X
Category : Business & Economics
Languages : en
Pages : 368
Book Description
Statistical and Probabilistic Methods in Actuarial Science covers many of the diverse methods in applied probability and statistics for students aspiring to careers in insurance, actuarial science, and finance. The book builds on students' existing knowledge of probability and statistics by establishing a solid and thorough understanding of
Computational Actuarial Science with R
Author: Arthur Charpentier
Publisher: CRC Press
ISBN: 1498759823
Category : Business & Economics
Languages : en
Pages : 652
Book Description
A Hands-On Approach to Understanding and Using Actuarial ModelsComputational Actuarial Science with R provides an introduction to the computational aspects of actuarial science. Using simple R code, the book helps you understand the algorithms involved in actuarial computations. It also covers more advanced topics, such as parallel computing and C/
Publisher: CRC Press
ISBN: 1498759823
Category : Business & Economics
Languages : en
Pages : 652
Book Description
A Hands-On Approach to Understanding and Using Actuarial ModelsComputational Actuarial Science with R provides an introduction to the computational aspects of actuarial science. Using simple R code, the book helps you understand the algorithms involved in actuarial computations. It also covers more advanced topics, such as parallel computing and C/