Generalized Hamiltonian Formalism for Field Theory

Generalized Hamiltonian Formalism for Field Theory PDF Author: G. Sardanashvily
Publisher: World Scientific
ISBN: 9789810220457
Category : Science
Languages : en
Pages : 168

Get Book Here

Book Description
In the framework of the geometric formulation of field theory, classical fields are represented by sections of fibred manifolds, and their dynamics is phrased in jet manifold terms. The Hamiltonian formalism in fibred manifolds is the multisymplectic generalization of the Hamiltonian formalism in mechanics when canonical momenta correspond to derivatives of fields with respect to all world coordinates, not only to time. This book is devoted to the application of this formalism to fundamental field models including gauge theory, gravitation theory, and spontaneous symmetry breaking. All these models are constraint ones. Their Euler-Lagrange equations are underdetermined and need additional conditions. In the Hamiltonian formalism, these conditions appear automatically as a part of the Hamilton equations, corresponding to different Hamiltonian forms associated with a degenerate Lagrangian density. The general procedure for describing constraint systems with quadratic and affine Lagrangian densities is presented.

Generalized Hamiltonian Formalism for Field Theory

Generalized Hamiltonian Formalism for Field Theory PDF Author: G. Sardanashvily
Publisher: World Scientific
ISBN: 9789810220457
Category : Science
Languages : en
Pages : 168

Get Book Here

Book Description
In the framework of the geometric formulation of field theory, classical fields are represented by sections of fibred manifolds, and their dynamics is phrased in jet manifold terms. The Hamiltonian formalism in fibred manifolds is the multisymplectic generalization of the Hamiltonian formalism in mechanics when canonical momenta correspond to derivatives of fields with respect to all world coordinates, not only to time. This book is devoted to the application of this formalism to fundamental field models including gauge theory, gravitation theory, and spontaneous symmetry breaking. All these models are constraint ones. Their Euler-Lagrange equations are underdetermined and need additional conditions. In the Hamiltonian formalism, these conditions appear automatically as a part of the Hamilton equations, corresponding to different Hamiltonian forms associated with a degenerate Lagrangian density. The general procedure for describing constraint systems with quadratic and affine Lagrangian densities is presented.

A Student's Guide to Lagrangians and Hamiltonians

A Student's Guide to Lagrangians and Hamiltonians PDF Author: Patrick Hamill
Publisher: Cambridge University Press
ISBN: 1107042887
Category : Mathematics
Languages : en
Pages : 185

Get Book Here

Book Description
A concise treatment of variational techniques, focussing on Lagrangian and Hamiltonian systems, ideal for physics, engineering and mathematics students.

Advanced Classical Field Theory

Advanced Classical Field Theory PDF Author: G. Giachetta
Publisher: World Scientific
ISBN: 9812838961
Category : Science
Languages : en
Pages : 393

Get Book Here

Book Description
Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory. The most physically relevant field theories OCo gauge theory on principal bundles, gravitation theory on natural bundles, theory of spinor fields and topological field theory OCo are presented in a complete way. This book is designed for theoreticians and mathematical physicists specializing in field theory. The authors have tried throughout to provide the necessary mathematical background, thus making the exposition self-contained.

Classical and Quantum Dynamics of Constrained Hamiltonian Systems

Classical and Quantum Dynamics of Constrained Hamiltonian Systems PDF Author: Heinz J. Rothe
Publisher: World Scientific
ISBN: 9814299642
Category : Science
Languages : en
Pages : 317

Get Book Here

Book Description
This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field?antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. All topics are well illustrated with examples emphasizing points of central interest. The book should enable graduate students to follow the literature on this subject without much problems, and to perform research in this field.

Connections In Classical And Quantum Field Theory

Connections In Classical And Quantum Field Theory PDF Author: Luigi Mangiarotti
Publisher: World Scientific
ISBN: 9814501409
Category : Science
Languages : en
Pages : 516

Get Book Here

Book Description
Geometrical notions and methods play an important role in both classical and quantum field theory, and a connection is a deep structure which apparently underlies the gauge-theoretical models in field theory and mechanics. This book is an encyclopaedia of modern geometric methods in theoretical physics. It collects together the basic mathematical facts about various types of connections, and provides a detailed exposition of relevant physical applications. It discusses the modern issues concerning the gauge theories of fundamental fields. The authors have tried to give all the necessary mathematical background, thus making the book self-contained.This book should be useful to graduate students, physicists and mathematicians who are interested in the issue of deep interrelations between theoretical physics and geometry.

Condensed Matter Field Theory

Condensed Matter Field Theory PDF Author: Alexander Altland
Publisher: Cambridge University Press
ISBN: 0521769752
Category : Science
Languages : en
Pages : 785

Get Book Here

Book Description
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.

Geometric Formulation of Classical and Quantum Mechanics

Geometric Formulation of Classical and Quantum Mechanics PDF Author: G. Giachetta
Publisher: World Scientific
ISBN: 9814313726
Category : Science
Languages : en
Pages : 405

Get Book Here

Book Description
The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. This book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent coordinate and reference frame transformations.

Variational Principles in Classical Mechanics

Variational Principles in Classical Mechanics PDF Author: Douglas Cline
Publisher:
ISBN: 9780998837277
Category :
Languages : en
Pages :

Get Book Here

Book Description
Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th - 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.The second edition adds discussion of the use of variational principles applied to the following topics:(1) Systems subject to initial boundary conditions(2) The hierarchy of related formulations based on action, Lagrangian, Hamiltonian, and equations of motion, to systems that involve symmetries.(3) Non-conservative systems.(4) Variable-mass systems.(5) The General Theory of Relativity.Douglas Cline is a Professor of Physics in the Department of Physics and Astronomy, University of Rochester, Rochester, New York.

Towards the Mathematics of Quantum Field Theory

Towards the Mathematics of Quantum Field Theory PDF Author: Frédéric Paugam
Publisher: Springer Science & Business Media
ISBN: 3319045644
Category : Science
Languages : en
Pages : 485

Get Book Here

Book Description
This ambitious and original book sets out to introduce to mathematicians (even including graduate students ) the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in use. This in turn promotes the interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, though mathematicians are the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second part presents a large family of examples of classical field theories, both from experimental and theoretical physics, while the third part provides an introduction to quantum field theory, presents various renormalization methods, and discusses the quantization of factorization algebras.

Hamiltonian Mechanics of Gauge Systems

Hamiltonian Mechanics of Gauge Systems PDF Author: Lev V. Prokhorov
Publisher: Cambridge University Press
ISBN: 1139500902
Category : Science
Languages : en
Pages : 485

Get Book Here

Book Description
The principles of gauge symmetry and quantization are fundamental to modern understanding of the laws of electromagnetism, weak and strong subatomic forces and the theory of general relativity. Ideal for graduate students and researchers in theoretical and mathematical physics, this unique book provides a systematic introduction to Hamiltonian mechanics of systems with gauge symmetry. The book reveals how gauge symmetry may lead to a non-trivial geometry of the physical phase space and studies its effect on quantum dynamics by path integral methods. It also covers aspects of Hamiltonian path integral formalism in detail, along with a number of related topics such as the theory of canonical transformations on phase space supermanifolds, non-commutativity of canonical quantization and elimination of non-physical variables. The discussion is accompanied by numerous detailed examples of dynamical models with gauge symmetries, clearly illustrating the key concepts.