Generalized Functions, Volume 5

Generalized Functions, Volume 5 PDF Author: I. M. Gel′fand
Publisher: American Mathematical Soc.
ISBN: 1470426633
Category : Mathematics
Languages : en
Pages : 474

Get Book Here

Book Description
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The unifying idea of Volume 5 in the series is the application of the theory of generalized functions developed in earlier volumes to problems of integral geometry, to representations of Lie groups, specifically of the Lorentz group, and to harmonic analysis on corresponding homogeneous spaces. The book is written with great clarity and requires little in the way of special previous knowledge of either group representation theory or integral geometry; it is also independent of the earlier volumes in the series. The exposition starts with the definition, properties, and main results related to the classical Radon transform, passing to integral geometry in complex space, representations of the group of complex unimodular matrices of second order, and harmonic analysis on this group and on most important homogeneous spaces related to this group. The volume ends with the study of representations of the group of real unimodular matrices of order two.

Generalized Functions, Volume 5

Generalized Functions, Volume 5 PDF Author: I. M. Gel′fand
Publisher: American Mathematical Soc.
ISBN: 1470426633
Category : Mathematics
Languages : en
Pages : 474

Get Book Here

Book Description
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The unifying idea of Volume 5 in the series is the application of the theory of generalized functions developed in earlier volumes to problems of integral geometry, to representations of Lie groups, specifically of the Lorentz group, and to harmonic analysis on corresponding homogeneous spaces. The book is written with great clarity and requires little in the way of special previous knowledge of either group representation theory or integral geometry; it is also independent of the earlier volumes in the series. The exposition starts with the definition, properties, and main results related to the classical Radon transform, passing to integral geometry in complex space, representations of the group of complex unimodular matrices of second order, and harmonic analysis on this group and on most important homogeneous spaces related to this group. The volume ends with the study of representations of the group of real unimodular matrices of order two.

Generalized Functions

Generalized Functions PDF Author: I. M. Gel'fand
Publisher:
ISBN: 9781483229751
Category : Theory of distributions (Functional analysis)
Languages : en
Pages : 449

Get Book Here

Book Description
Integral Geometry and Representation Theory ...

Integral Geometry and Representation Theory

Integral Geometry and Representation Theory PDF Author: I. M. Gel'fand
Publisher: Academic Press
ISBN: 1483262251
Category : Mathematics
Languages : en
Pages : 468

Get Book Here

Book Description
Generalized Functions, Volume 5: Integral Geometry and Representation Theory is devoted to the theory of representations, focusing on the group of two-dimensional complex matrices of determinant one. This book emphasizes that the theory of representations is a good example of the use of algebraic and geometric methods in functional analysis, in which transformations are performed not on the points of a space, but on the functions defined on it. The topics discussed include Radon transform on a real affine space, integral transforms in the complex domain, and representations of the group of complex unimodular matrices in two dimensions. The properties of the Fourier transform on G, integral geometry in a space of constant curvature, harmonic analysis on spaces homogeneous with respect to the Lorentz Group, and invariance under translation and dilation are also described. This volume is suitable for mathematicians, specialists, and students learning integral geometry and representation theory.

Integral Geometry and Geometric Probability

Integral Geometry and Geometric Probability PDF Author: Luis A. Santaló
Publisher: Cambridge University Press
ISBN: 0521523443
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
Classic text on integral geometry now available in paperback in the Cambridge Mathematical Library.

Generalized Radon Transforms And Imaging By Scattered Particles: Broken Rays, Cones, And Stars In Tomography

Generalized Radon Transforms And Imaging By Scattered Particles: Broken Rays, Cones, And Stars In Tomography PDF Author: Gaik Ambartsoumian
Publisher: World Scientific
ISBN: 9811242453
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description
A generalized Radon transform (GRT) maps a function to its weighted integrals along a family of curves or surfaces. Such operators appear in mathematical models of various imaging modalities. The GRTs integrating along smooth curves and surfaces (lines, planes, circles, spheres, amongst others) have been studied at great lengths for decades, but relatively little attention has been paid to transforms integrating along non-smooth trajectories. Recently, an interesting new class of GRTs emerged at the forefront of research in integral geometry. The two common features of these transforms are the presence of a 'vertex' in their paths of integration (broken rays, cones, and stars) and their relation to imaging techniques based on physics of scattered particles (Compton camera imaging, single scattering tomography, etc).This book covers the relevant imaging modalities, their mathematical models, and the related GRTs. The discussion of the latter comprises a thorough exploration of their known mathematical properties, including injectivity, inversion, range description and microlocal analysis. The mathematical background required for reading most of the book is at the level of an advanced undergraduate student, which should make its content attractive for a large audience of specialists interested in imaging. Mathematicians may appreciate certain parts of the theory that are particularly elegant with connections to functional analysis, PDEs and algebraic geometry.

Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis

Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis PDF Author: Eric Grinberg
Publisher: American Mathematical Soc.
ISBN: 0821811487
Category : Mathematics
Languages : en
Pages : 524

Get Book Here

Book Description
This book presents the proceedings from the conference honoring the work of Leon Ehrenpreis. Professor Ehrenpreis worked in many different areas of mathematics and found connections among all of them. For example, one can find his analytic ideas in the context of number theory, geometric thinking within analysis, transcendental number theory applied to partial differential equations, and more. The conference brought together the communities of mathematicians working in the areas of interest to Professor Ehrenpreis and allowed them to share the research inspired by his work. The collection of articles here presents current research on PDEs, several complex variables, analytic number theory, integral geometry, and tomography. The work of Professor Ehrenpreis has contributed to basic definitions in these areas and has motivated a wealth of research results. This volume offers a survey of the fundamental principles that unified the conference and influenced the mathematics of Leon Ehrenpreis.

Geometric Algebra Applications Vol. I

Geometric Algebra Applications Vol. I PDF Author: Eduardo Bayro-Corrochano
Publisher: Springer
ISBN: 3319748300
Category : Technology & Engineering
Languages : en
Pages : 753

Get Book Here

Book Description
The goal of the Volume I Geometric Algebra for Computer Vision, Graphics and Neural Computing is to present a unified mathematical treatment of diverse problems in the general domain of artificial intelligence and associated fields using Clifford, or geometric, algebra. Geometric algebra provides a rich and general mathematical framework for Geometric Cybernetics in order to develop solutions, concepts and computer algorithms without losing geometric insight of the problem in question. Current mathematical subjects can be treated in an unified manner without abandoning the mathematical system of geometric algebra for instance: multilinear algebra, projective and affine geometry, calculus on manifolds, Riemann geometry, the representation of Lie algebras and Lie groups using bivector algebras and conformal geometry. By treating a wide spectrum of problems in a common language, this Volume I offers both new insights and new solutions that should be useful to scientists, and engineers working in different areas related with the development and building of intelligent machines. Each chapter is written in accessible terms accompanied by numerous examples, figures and a complementary appendix on Clifford algebras, all to clarify the theory and the crucial aspects of the application of geometric algebra to problems in graphics engineering, image processing, pattern recognition, computer vision, machine learning, neural computing and cognitive systems.

Theory and Applications of Differentiable Functions of Several Variables

Theory and Applications of Differentiable Functions of Several Variables PDF Author:
Publisher: American Mathematical Soc.
ISBN: 9780821831526
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
This collection is the 14th in an ongoing series on differentiable functions of several variables, presenting recent contributions to a line of research begun by Sobolev in 1950. The papers study various spaces of differentiable functions of several real variables in Euclidean space, their imbeddings, equivalent normings, weighted estimates of derivatives, and traces on sets. Several questions of approximation in function spaces on the line, on a hyperboloid, and on Lobachevsky space are studied. Investigations of bilinear approximations are applied to estimates of the singular numbers of integral operators and widths. The authors also examine the asymptotics of the spectrum of elliptic systems, as well as the Dirichlet variational problem for a degenerate elliptic operator. Finally, a block method of solving Laplace's equation for nonanalytic boundary conditions is developed.

Tomography, Impedance Imaging, and Integral Geometry

Tomography, Impedance Imaging, and Integral Geometry PDF Author: Eric Todd Quinto
Publisher: American Mathematical Soc.
ISBN: 9780821896990
Category : Medical
Languages : en
Pages : 300

Get Book Here

Book Description
One of the most exciting features of tomography is the strong relationship between high-level pure mathematics (such as harmonic analysis, partial differential equations, microlocal analysis, and group theory) and applications to medical imaging, impedance imaging, radiotherapy, and industrial nondestructive evaluation. This book contains the refereed proceedings of the AMS-SIAM Summer Seminar on Tomography, Impedance Imaging, and Integral Geometry, held at Mount Holyoke College in June 1993. A number of common themes are found among the papers. Group theory is fundamental both to tomographic sampling theorems and to pure Radon transforms. Microlocal and Fourier analysis are important for research in all three fields. Differential equations and integral geometric techniques are useful in impedance imaging. In short, a common body of mathematics can be used to solve dramatically different problems in pure and applied mathematics. Radon transforms can be used to model impedance imaging problems. These proceedings include exciting results in all three fields represented at the conference.

The Gelfand Mathematical Seminars, 1990–1992

The Gelfand Mathematical Seminars, 1990–1992 PDF Author: L. Corwin
Publisher: Springer Science & Business Media
ISBN: 1461203457
Category : Mathematics
Languages : en
Pages : 239

Get Book Here

Book Description
This Seminar began in Moscow in November 1943 and has continued without interruption up to the present. We are happy that with this vol ume, Birkhiiuser has begun to publish papers of talks from the Seminar. It was, unfortunately, difficult to organize their publication before 1990. Since 1990, most of the talks have taken place at Rutgers University in New Brunswick, New Jersey. Parallel seminars were also held in Moscow, and during July, 1992, at IRES in Bures-sur-Yvette, France. Speakers were invited to submit papers in their own style, and to elaborate on what they discussed in the Seminar. We hope that readers will find the diversity of styles appealing, and recognize that to some extent this reflects the diversity of styles in a mathematical society. The principal aim was to have interesting talks, even if the topic was not especially popular at the time. The papers listed in the Table of Contents reflect some of the rich variety of ideas presented in the Seminar. Not all the speakers submit ted papers. Among the interesting talks that influenced the seminar in an important way, let us mention, for example, that of R. Langlands on per colation theory and those of J. Conway and J. McKay on sporadic groups. In addition, there were many extemporaneous talks as well as short discus sions.