Generalized Functions in Mathematical Physics

Generalized Functions in Mathematical Physics PDF Author: Vasiliĭ Sergeevich Vladimirov
Publisher:
ISBN:
Category : Functions
Languages : en
Pages : 384

Get Book Here

Book Description

Generalized Functions in Mathematical Physics

Generalized Functions in Mathematical Physics PDF Author: Vasiliĭ Sergeevich Vladimirov
Publisher:
ISBN:
Category : Functions
Languages : en
Pages : 384

Get Book Here

Book Description


Generalized Functions Theory and Technique

Generalized Functions Theory and Technique PDF Author: Ram P. Kanwal
Publisher: Springer Science & Business Media
ISBN: 1468400355
Category : Mathematics
Languages : en
Pages : 474

Get Book Here

Book Description
This second edition of Generalized Functions has been strengthened in many ways. The already extensive set of examples has been expanded. Since the publication of the first edition, there has been tremendous growth in the subject and I have attempted to incorporate some of these new concepts. Accordingly, almost all the chapters have been revised. The bibliography has been enlarged considerably. Some of the material has been reorganized. For example, Chapters 12 and 13 of the first edition have been consolidated into Chapter 12 of this edition by a judicious process of elimination and addition of the subject matter. The new Chapter 13 explains the interplay between the theories of moments, asymptotics, and singular perturbations. Similarly, some sections of Chapter 15 have been revised and included in earlier chapters to improve the logical flow of ideas. However, two sections are retained. The section dealing with the application of the probability theory has been revised, and I am thankful to Professor Z.L. Crvenkovic for her help. The new material included in this chapter pertains to the modern topics of periodic distributions and microlocal theory. I have demonstrated through various examples that familiarity with the generalized functions is very helpful for students in physical sciences and technology. For instance, the reader will realize from Chapter 6 how the generalized functions have revolutionized the Fourier analysis which is being used extensively in many fields of scientific activity.

Geometric Theory of Generalized Functions with Applications to General Relativity

Geometric Theory of Generalized Functions with Applications to General Relativity PDF Author: M. Grosser
Publisher: Springer Science & Business Media
ISBN: 9401598452
Category : Mathematics
Languages : en
Pages : 517

Get Book Here

Book Description
Over the past few years a certain shift of focus within the theory of algebras of generalized functions (in the sense of J. F. Colombeau) has taken place. Originating in infinite dimensional analysis and initially applied mainly to problems in nonlinear partial differential equations involving singularities, the theory has undergone a change both in in ternal structure and scope of applicability, due to a growing number of applications to questions of a more geometric nature. The present book is intended to provide an in-depth presentation of these develop ments comprising its structural aspects within the theory of generalized functions as well as a (selective but, as we hope, representative) set of applications. This main purpose of the book is accompanied by a number of sub ordinate goals which we were aiming at when arranging the material included here. First, despite the fact that by now several excellent mono graphs on Colombeau algebras are available, we have decided to give a self-contained introduction to the field in Chapter 1. Our motivation for this decision derives from two main features of our approach. On the one hand, in contrast to other treatments of the subject we base our intro duction to the field on the so-called special variant of the algebras, which makes many of the fundamental ideas of the field particularly transpar ent and at the same time facilitates and motivates the introduction of the more involved concepts treated later in the chapter.

Methods of the Theory of Generalized Functions

Methods of the Theory of Generalized Functions PDF Author: V. S. Vladimirov
Publisher: CRC Press
ISBN: 9780415273565
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
This volume presents the general theory of generalized functions, including the Fourier, Laplace, Mellin, Hilbert, Cauchy-Bochner and Poisson integral transforms and operational calculus, with the traditional material augmented by the theory of Fourier series, abelian theorems, and boundary values of helomorphic functions for one and several variables. The author addresses several facets in depth, including convolution theory, convolution algebras and convolution equations in them, homogenous generalized functions, and multiplication of generalized functions. This book will meet the needs of researchers, engineers, and students of applied mathematics, control theory, and the engineering sciences.

Generalized Calculus with Applications to Matter and Forces

Generalized Calculus with Applications to Matter and Forces PDF Author: Luis Manuel Braga de Costa Campos
Publisher: CRC Press
ISBN: 1420071157
Category : Mathematics
Languages : en
Pages : 888

Get Book Here

Book Description
Combining mathematical theory, physical principles, and engineering problems, Generalized Calculus with Applications to Matter and Forces examines generalized functions, including the Heaviside unit jump and the Dirac unit impulse and its derivatives of all orders, in one and several dimensions. The text introduces the two main approaches to generalized functions: (1) as a nonuniform limit of a family of ordinary functions, and (2) as a functional over a set of test functions from which properties are inherited. The second approach is developed more extensively to encompass multidimensional generalized functions whose arguments are ordinary functions of several variables. As part of a series of books for engineers and scientists exploring advanced mathematics, Generalized Calculus with Applications to Matter and Forces presents generalized functions from an applied point of view, tackling problem classes such as: Gauss and Stokes’ theorems in the differential geometry, tensor calculus, and theory of potential fields Self-adjoint and non-self-adjoint problems for linear differential equations and nonlinear problems with large deformations Multipolar expansions and Green’s functions for elastic strings and bars, potential and rotational flow, electro- and magnetostatics, and more This third volume in the series Mathematics and Physics for Science and Technology is designed to complete the theory of functions and its application to potential fields, relating generalized functions to broader follow-on topics like differential equations. Featuring step-by-step examples with interpretations of results and discussions of assumptions and their consequences, Generalized Calculus with Applications to Matter and Forces enables readers to construct mathematical–physical models suited to new observations or novel engineering devices.

Equations of Mathematical Physics

Equations of Mathematical Physics PDF Author: Vasiliĭ Sergeevich Vladimirov
Publisher:
ISBN:
Category : Boundary value problems
Languages : en
Pages : 482

Get Book Here

Book Description


Hilbert Spaces, Wavelets, Generalised Functions and Modern Quantum Mechanics

Hilbert Spaces, Wavelets, Generalised Functions and Modern Quantum Mechanics PDF Author: W.-H. Steeb
Publisher: Springer Science & Business Media
ISBN: 9401153329
Category : Science
Languages : en
Pages : 247

Get Book Here

Book Description
This book gives a comprehensive introduction to modern quantum mechanics, emphasising the underlying Hilbert space theory and generalised function theory. All the major modern techniques and approaches used in quantum mechanics are introduced, such as Berry phase, coherent and squeezed states, quantum computing, solitons and quantum mechanics. Audience: The book is suitable for graduate students in physics and mathematics.

Distribution Theory and Transform Analysis

Distribution Theory and Transform Analysis PDF Author: A.H. Zemanian
Publisher: Courier Corporation
ISBN: 0486151948
Category : Mathematics
Languages : en
Pages : 404

Get Book Here

Book Description
Distribution theory, a relatively recent mathematical approach to classical Fourier analysis, not only opened up new areas of research but also helped promote the development of such mathematical disciplines as ordinary and partial differential equations, operational calculus, transformation theory, and functional analysis. This text was one of the first to give a clear explanation of distribution theory; it combines the theory effectively with extensive practical applications to science and engineering problems. Based on a graduate course given at the State University of New York at Stony Brook, this book has two objectives: to provide a comparatively elementary introduction to distribution theory and to describe the generalized Fourier and Laplace transformations and their applications to integrodifferential equations, difference equations, and passive systems. After an introductory chapter defining distributions and the operations that apply to them, Chapter 2 considers the calculus of distributions, especially limits, differentiation, integrations, and the interchange of limiting processes. Some deeper properties of distributions, such as their local character as derivatives of continuous functions, are given in Chapter 3. Chapter 4 introduces the distributions of slow growth, which arise naturally in the generalization of the Fourier transformation. Chapters 5 and 6 cover the convolution process and its use in representing differential and difference equations. The distributional Fourier and Laplace transformations are developed in Chapters 7 and 8, and the latter transformation is applied in Chapter 9 to obtain an operational calculus for the solution of differential and difference equations of the initial-condition type. Some of the previous theory is applied in Chapter 10 to a discussion of the fundamental properties of certain physical systems, while Chapter 11 ends the book with a consideration of periodic distributions. Suitable for a graduate course for engineering and science students or for a senior-level undergraduate course for mathematics majors, this book presumes a knowledge of advanced calculus and the standard theorems on the interchange of limit processes. A broad spectrum of problems has been included to satisfy the diverse needs of various types of students.

Kernel Functions and Elliptic Differential Equations in Mathematical Physics

Kernel Functions and Elliptic Differential Equations in Mathematical Physics PDF Author: Stefan Bergman
Publisher: Courier Corporation
ISBN: 0486445534
Category : Mathematics
Languages : en
Pages : 450

Get Book Here

Book Description
This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.

Distributions

Distributions PDF Author: Pulin Kumar Bhattacharyya
Publisher: Walter de Gruyter
ISBN: 3110269295
Category : Mathematics
Languages : en
Pages : 871

Get Book Here

Book Description
This book grew out of a course taught in the Department of Mathematics, Indian Institute of Technology, Delhi, which was tailored to the needs of the applied community of mathematicians, engineers, physicists etc., who were interested in studying the problems of mathematical physics in general and their approximate solutions on computer in particular. Almost all topics which will be essential for the study of Sobolev spaces and their applications in the elliptic boundary value problems and their finite element approximations are presented. Also many additional topics of interests for specific applied disciplines and engineering, for example, elementary solutions, derivatives of discontinuous functions of several variables, delta-convergent sequences of functions, Fourier series of distributions, convolution system of equations etc. have been included along with many interesting examples.