Generalized Convexity and Vector Optimization

Generalized Convexity and Vector Optimization PDF Author: Shashi K. Mishra
Publisher: Springer Science & Business Media
ISBN: 3540856714
Category : Mathematics
Languages : en
Pages : 298

Get Book Here

Book Description
The present lecture note is dedicated to the study of the optimality conditions and the duality results for nonlinear vector optimization problems, in ?nite and in?nite dimensions. The problems include are nonlinear vector optimization problems, s- metric dual problems, continuous-time vector optimization problems, relationships between vector optimization and variational inequality problems. Nonlinear vector optimization problems arise in several contexts such as in the building and interpretation of economic models; the study of various technolo- cal processes; the development of optimal choices in ?nance; management science; production processes; transportation problems and statistical decisions, etc. In preparing this lecture note a special effort has been made to obtain a se- contained treatment of the subjects; so we hope that this may be a suitable source for a beginner in this fast growing area of research, a semester graduate course in nonlinear programing, and a good reference book. This book may be useful to theoretical economists, engineers, and applied researchers involved in this area of active research. The lecture note is divided into eight chapters: Chapter 1 brie?y deals with the notion of nonlinear programing problems with basic notations and preliminaries. Chapter 2 deals with various concepts of convex sets, convex functions, invex set, invex functions, quasiinvex functions, pseudoinvex functions, type I and generalized type I functions, V-invex functions, and univex functions.

Handbook of Generalized Convexity and Generalized Monotonicity

Handbook of Generalized Convexity and Generalized Monotonicity PDF Author: Nicolas Hadjisavvas
Publisher: Springer Science & Business Media
ISBN: 0387233938
Category : Mathematics
Languages : en
Pages : 684

Get Book Here

Book Description
Studies in generalized convexity and generalized monotonicity have significantly increased during the last two decades. Researchers with very diverse backgrounds such as mathematical programming, optimization theory, convex analysis, nonlinear analysis, nonsmooth analysis, linear algebra, probability theory, variational inequalities, game theory, economic theory, engineering, management science, equilibrium analysis, for example are attracted to this fast growing field of study. Such enormous research activity is partially due to the discovery of a rich, elegant and deep theory which provides a basis for interesting existing and potential applications in different disciplines. The handbook offers an advanced and broad overview of the current state of the field. It contains fourteen chapters written by the leading experts on the respective subject; eight on generalized convexity and the remaining six on generalized monotonicity.

V-Invex Functions and Vector Optimization

V-Invex Functions and Vector Optimization PDF Author: Shashi K. Mishra
Publisher: Springer Science & Business Media
ISBN: 0387754466
Category : Mathematics
Languages : en
Pages : 170

Get Book Here

Book Description
This volume summarizes and synthesizes an aspect of research work that has been done in the area of Generalized Convexity over the past few decades. Specifically, the book focuses on V-invex functions in vector optimization that have grown out of the work of Jeyakumar and Mond in the 1990’s. The authors integrate related research into the book and demonstrate the wide context from which the area has grown and continues to grow.

Generalized Convexity

Generalized Convexity PDF Author: Sandor Komlosi
Publisher: Springer Science & Business Media
ISBN: 3642468020
Category : Business & Economics
Languages : en
Pages : 406

Get Book Here

Book Description
Generalizations of the classical concept of a convex function have been proposed in various fields such as economics, management science, engineering, statistics and applied sciences during the second half of this century. In addition to new results in more established areas of generalized convexity, this book presents several important developments in recently emerging areas. Also, a number of interesting applications are reported.

Generalized Convexity and Optimization

Generalized Convexity and Optimization PDF Author: Alberto Cambini
Publisher: Springer Science & Business Media
ISBN: 3540708766
Category : Mathematics
Languages : en
Pages : 252

Get Book Here

Book Description
The authors have written a rigorous yet elementary and self-contained book to present, in a unified framework, generalized convex functions. The book also includes numerous exercises and two appendices which list the findings consulted.

Generalized Concavity

Generalized Concavity PDF Author: Mordecai Avriel
Publisher: SIAM
ISBN: 0898718961
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
Originally published: New York: Plenum Press, 1988.

Mathematics of Optimization: Smooth and Nonsmooth Case

Mathematics of Optimization: Smooth and Nonsmooth Case PDF Author: Giorgio Giorgi
Publisher: Elsevier
ISBN: 008053595X
Category : Mathematics
Languages : en
Pages : 615

Get Book Here

Book Description
The book is intended for people (graduates, researchers, but also undergraduates with a good mathematical background) involved in the study of (static) optimization problems (in finite-dimensional spaces). It contains a lot of material, from basic tools of convex analysis to optimality conditions for smooth optimization problems, for non smooth optimization problems and for vector optimization problems.The development of the subjects are self-contained and the bibliographical references are usually treated in different books (only a few books on optimization theory deal also with vector problems), so the book can be a starting point for further readings in a more specialized literature.Assuming only a good (even if not advanced) knowledge of mathematical analysis and linear algebra, this book presents various aspects of the mathematical theory in optimization problems. The treatment is performed in finite-dimensional spaces and with no regard to algorithmic questions. After two chapters concerning, respectively, introductory subjects and basic tools and concepts of convex analysis, the book treats extensively mathematical programming problems in the smmoth case, in the nonsmooth case and finally vector optimization problems.· Self-contained· Clear style and results are either proved or stated precisely with adequate references· The authors have several years experience in this field· Several subjects (some of them non usual in books of this kind) in one single book, including nonsmooth optimization and vector optimization problems· Useful long references list at the end of each chapter

Generalized Convexity, Generalized Monotonicity and Applications

Generalized Convexity, Generalized Monotonicity and Applications PDF Author: Andrew Eberhard
Publisher: Springer Science & Business Media
ISBN: 0387236392
Category : Business & Economics
Languages : en
Pages : 342

Get Book Here

Book Description
In recent years there is a growing interest in generalized convex fu- tions and generalized monotone mappings among the researchers of - plied mathematics and other sciences. This is due to the fact that mathematical models with these functions are more suitable to describe problems of the real world than models using conventional convex and monotone functions. Generalized convexity and monotonicity are now considered as an independent branch of applied mathematics with a wide range of applications in mechanics, economics, engineering, finance and many others. The present volume contains 20 full length papers which reflect c- rent theoretical studies of generalized convexity and monotonicity, and numerous applications in optimization, variational inequalities, equil- rium problems etc. All these papers were refereed and carefully selected from invited talks and contributed talks that were presented at the 7th International Symposium on Generalized Convexity/Monotonicity held in Hanoi, Vietnam, August 27-31, 2002. This series of Symposia is or- nized by the Working Group on Generalized Convexity (WGGC) every 3 years and aims to promote and disseminate research on the field. The WGGC (http://www.genconv.org) consists of more than 300 researchers coming from 36 countries.

Generalized Convexity and Generalized Monotonicity

Generalized Convexity and Generalized Monotonicity PDF Author: Nicolas Hadjisavvas
Publisher: Springer Science & Business Media
ISBN: 3642566456
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
Various generalizations of convex functions have been introduced in areas such as mathematical programming, economics, management science, engineering, stochastics and applied sciences, for example. Such functions preserve one or more properties of convex functions and give rise to models which are more adaptable to real-world situations than convex models. Similarly, generalizations of monotone maps have been studied recently. A growing literature of this interdisciplinary field has appeared, and a large number of international meetings are entirely devoted or include clusters on generalized convexity and generalized monotonicity. The present book contains a selection of refereed papers presented at the 6th International Symposium on Generalized Convexity/Monotonicity, and aims to review the latest developments in the field.

Generalized Convexity and Related Topics

Generalized Convexity and Related Topics PDF Author: Igor V. Konnov
Publisher: Springer Science & Business Media
ISBN: 3540370072
Category : Business & Economics
Languages : en
Pages : 465

Get Book Here

Book Description
The book contains invited papers by well-known experts on a wide range of topics (economics, variational analysis, probability etc.) closely related to convexity and generalized convexity, and refereed contributions of specialists from the world on current research on generalized convexity and applications, in particular, to optimization, economics and operations research.