Author: Daniel Huybrechts
Publisher: Cambridge University Press
ISBN: 1139485822
Category : Mathematics
Languages : en
Pages : 345
Book Description
This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.
The Geometry of Moduli Spaces of Sheaves
Author: Daniel Huybrechts
Publisher: Cambridge University Press
ISBN: 1139485822
Category : Mathematics
Languages : en
Pages : 345
Book Description
This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.
Publisher: Cambridge University Press
ISBN: 1139485822
Category : Mathematics
Languages : en
Pages : 345
Book Description
This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.
Relative Moduli Spaces of Semi-stable Sheaves on Families of Curves
Author: Jens Thomas Alexander Lang
Publisher: Herbert Utz Verlag
ISBN: 9783896758941
Category :
Languages : en
Pages : 152
Book Description
Publisher: Herbert Utz Verlag
ISBN: 9783896758941
Category :
Languages : en
Pages : 152
Book Description
Lectures on K3 Surfaces
Author: Daniel Huybrechts
Publisher: Cambridge University Press
ISBN: 1316797252
Category : Mathematics
Languages : en
Pages : 499
Book Description
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.
Publisher: Cambridge University Press
ISBN: 1316797252
Category : Mathematics
Languages : en
Pages : 499
Book Description
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.
Quasi-projective Moduli for Polarized Manifolds
Author: Eckart Viehweg
Publisher: Springer Science & Business Media
ISBN: 3642797458
Category : Mathematics
Languages : en
Pages : 329
Book Description
The concept of moduli goes back to B. Riemann, who shows in [68] that the isomorphism class of a Riemann surface of genus 9 ~ 2 depends on 3g - 3 parameters, which he proposes to name "moduli". A precise formulation of global moduli problems in algebraic geometry, the definition of moduli schemes or of algebraic moduli spaces for curves and for certain higher dimensional manifolds have only been given recently (A. Grothendieck, D. Mumford, see [59]), as well as solutions in some cases. It is the aim of this monograph to present methods which allow over a field of characteristic zero to construct certain moduli schemes together with an ample sheaf. Our main source of inspiration is D. Mumford's "Geometric In variant Theory". We will recall the necessary tools from his book [59] and prove the "Hilbert-Mumford Criterion" and some modified version for the stability of points under group actions. As in [78], a careful study of positivity proper ties of direct image sheaves allows to use this criterion to construct moduli as quasi-projective schemes for canonically polarized manifolds and for polarized manifolds with a semi-ample canonical sheaf.
Publisher: Springer Science & Business Media
ISBN: 3642797458
Category : Mathematics
Languages : en
Pages : 329
Book Description
The concept of moduli goes back to B. Riemann, who shows in [68] that the isomorphism class of a Riemann surface of genus 9 ~ 2 depends on 3g - 3 parameters, which he proposes to name "moduli". A precise formulation of global moduli problems in algebraic geometry, the definition of moduli schemes or of algebraic moduli spaces for curves and for certain higher dimensional manifolds have only been given recently (A. Grothendieck, D. Mumford, see [59]), as well as solutions in some cases. It is the aim of this monograph to present methods which allow over a field of characteristic zero to construct certain moduli schemes together with an ample sheaf. Our main source of inspiration is D. Mumford's "Geometric In variant Theory". We will recall the necessary tools from his book [59] and prove the "Hilbert-Mumford Criterion" and some modified version for the stability of points under group actions. As in [78], a careful study of positivity proper ties of direct image sheaves allows to use this criterion to construct moduli as quasi-projective schemes for canonically polarized manifolds and for polarized manifolds with a semi-ample canonical sheaf.
Kähler Metric and Moduli Spaces
Author: T. Ochiai
Publisher: Academic Press
ISBN: 1483214672
Category : Mathematics
Languages : en
Pages : 472
Book Description
Kähler Metric and Moduli Spaces, Volume 18-II covers survey notes from the expository lectures given during the seminars in the academic year of 1987 for graduate students and mature mathematicians who were not experts on the topics considered during the sessions about partial differential equations. The book discusses basic facts on Einstein metrics in complex geometry; Einstein-Kähler metrics with positive or non-positive Ricci curvature; Yang-Mills connections; and Einstein-Hermitian metrics. The text then describes the tangent sheaves of minimal varieties; Ricci-Flat Kähler metrics on affine algebraic manifolds; and degenerations of Kähler-Einstein. The moduli of Einstein metrics on a K3 surface and degeneration of Type I and the uniformization of complex surfaces are also considered. Mathematicians and graduate students taking differential and analytic geometry will find the book useful.
Publisher: Academic Press
ISBN: 1483214672
Category : Mathematics
Languages : en
Pages : 472
Book Description
Kähler Metric and Moduli Spaces, Volume 18-II covers survey notes from the expository lectures given during the seminars in the academic year of 1987 for graduate students and mature mathematicians who were not experts on the topics considered during the sessions about partial differential equations. The book discusses basic facts on Einstein metrics in complex geometry; Einstein-Kähler metrics with positive or non-positive Ricci curvature; Yang-Mills connections; and Einstein-Hermitian metrics. The text then describes the tangent sheaves of minimal varieties; Ricci-Flat Kähler metrics on affine algebraic manifolds; and degenerations of Kähler-Einstein. The moduli of Einstein metrics on a K3 surface and degeneration of Type I and the uniformization of complex surfaces are also considered. Mathematicians and graduate students taking differential and analytic geometry will find the book useful.
Moduli Spaces of Riemann Surfaces
Author: Benson Farb
Publisher: American Mathematical Soc.
ISBN: 0821898876
Category : Mathematics
Languages : en
Pages : 371
Book Description
Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Publisher: American Mathematical Soc.
ISBN: 0821898876
Category : Mathematics
Languages : en
Pages : 371
Book Description
Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Vector Bundles on Complex Projective Spaces
Author: Christian Okonek
Publisher: Springer Science & Business Media
ISBN: 3034801513
Category : Mathematics
Languages : en
Pages : 246
Book Description
These lecture notes are intended as an introduction to the methods of classi?cation of holomorphic vector bundles over projective algebraic manifolds X. To be as concrete as possible we have mostly restricted ourselves to the case X = P . According to Serre (GAGA) the class- n cation of holomorphic vector bundles is equivalent to the classi?cation of algebraic vector bundles. Here we have used almost exclusively the language of analytic geometry. The book is intended for students who have a basic knowledge of analytic and (or) algebraic geometry. Some fundamental results from these ?elds are summarized at the beginning. One of the authors gave a survey in the S ́eminaire Bourbaki 1978 on the current state of the classi?cation of holomorphic vector bundles over P . This lecture then served as the basis for a course of lectures n in G ̈ottingen in the Winter Semester 78/79. The present work is an extended and up-dated exposition of that course. Because of the - troductory nature of this book we have had to leave out some di?cult topics such as the restriction theorem of Barth. As compensation we have appended to each section a paragraph in which historical remarks are made, further results indicated and unsolved problems presented. The book is divided into two chapters. Each chapter is subdivided into several sections which in turn are made up of a number of pa- graphs. Each section is preceded by a short description of its contents.
Publisher: Springer Science & Business Media
ISBN: 3034801513
Category : Mathematics
Languages : en
Pages : 246
Book Description
These lecture notes are intended as an introduction to the methods of classi?cation of holomorphic vector bundles over projective algebraic manifolds X. To be as concrete as possible we have mostly restricted ourselves to the case X = P . According to Serre (GAGA) the class- n cation of holomorphic vector bundles is equivalent to the classi?cation of algebraic vector bundles. Here we have used almost exclusively the language of analytic geometry. The book is intended for students who have a basic knowledge of analytic and (or) algebraic geometry. Some fundamental results from these ?elds are summarized at the beginning. One of the authors gave a survey in the S ́eminaire Bourbaki 1978 on the current state of the classi?cation of holomorphic vector bundles over P . This lecture then served as the basis for a course of lectures n in G ̈ottingen in the Winter Semester 78/79. The present work is an extended and up-dated exposition of that course. Because of the - troductory nature of this book we have had to leave out some di?cult topics such as the restriction theorem of Barth. As compensation we have appended to each section a paragraph in which historical remarks are made, further results indicated and unsolved problems presented. The book is divided into two chapters. Each chapter is subdivided into several sections which in turn are made up of a number of pa- graphs. Each section is preceded by a short description of its contents.
Algebraic Geometry, Arcata 1974
Author: Robin Hartshorne
Publisher: American Mathematical Soc.
ISBN: 082181429X
Category : Mathematics
Languages : en
Pages : 658
Book Description
Publisher: American Mathematical Soc.
ISBN: 082181429X
Category : Mathematics
Languages : en
Pages : 658
Book Description
Facets of Algebraic Geometry: Volume 1
Author: Paolo Aluffi
Publisher: Cambridge University Press
ISBN: 1108890539
Category : Mathematics
Languages : en
Pages : 418
Book Description
Written to honor the 80th birthday of William Fulton, the articles collected in this volume (the first of a pair) present substantial contributions to algebraic geometry and related fields, with an emphasis on combinatorial algebraic geometry and intersection theory. Featured topics include commutative algebra, moduli spaces, quantum cohomology, representation theory, Schubert calculus, and toric and tropical geometry. The range of these contributions is a testament to the breadth and depth of Fulton's mathematical influence. The authors are all internationally recognized experts, and include well-established researchers as well as rising stars of a new generation of mathematicians. The text aims to stimulate progress and provide inspiration to graduate students and researchers in the field.
Publisher: Cambridge University Press
ISBN: 1108890539
Category : Mathematics
Languages : en
Pages : 418
Book Description
Written to honor the 80th birthday of William Fulton, the articles collected in this volume (the first of a pair) present substantial contributions to algebraic geometry and related fields, with an emphasis on combinatorial algebraic geometry and intersection theory. Featured topics include commutative algebra, moduli spaces, quantum cohomology, representation theory, Schubert calculus, and toric and tropical geometry. The range of these contributions is a testament to the breadth and depth of Fulton's mathematical influence. The authors are all internationally recognized experts, and include well-established researchers as well as rising stars of a new generation of mathematicians. The text aims to stimulate progress and provide inspiration to graduate students and researchers in the field.
The Kobayashi-hitchin Correspondence
Author: Martin Lubke
Publisher: World Scientific
ISBN: 9814500828
Category : Mathematics
Languages : en
Pages : 265
Book Description
By the Kobayashi-Hitchin correspondence, the authors of this book mean the isomorphy of the moduli spaces Mst of stable holomorphic — resp. MHE of irreducible Hermitian-Einstein — structures in a differentiable complex vector bundle on a compact complex manifold. They give a complete proof of this result in the most general setting, and treat several applications and some new examples.After discussing the stability concept on arbitrary compact complex manifolds in Chapter 1, the authors consider, in Chapter 2, Hermitian-Einstein structures and prove the stability of irreducible Hermitian-Einstein bundles. This implies the existence of a natural map I from MHE to Mst which is bijective by the result of (the rather technical) Chapter 3. In Chapter 4 the moduli spaces involved are studied in detail, in particular it is shown that their natural analytic structures are isomorphic via I. Also a comparison theorem for moduli spaces of instantons resp. stable bundles is proved; this is the form in which the Kobayashi-Hitchin has been used in Donaldson theory to study differentiable structures of complex surfaces. The fact that I is an isomorphism of real analytic spaces is applied in Chapter 5 to show the openness of the stability condition and the existence of a natural Hermitian metric in the moduli space, and to study, at least in some cases, the dependence of Mst on the base metric used to define stability. Another application is a rather simple proof of Bogomolov's theorem on surfaces of type VII0. In Chapter 6, some moduli spaces of stable bundles are calculated to illustrate what can happen in the general (i.e. not necessarily Kähler) case compared to the algebraic or Kähler one. Finally, appendices containing results, especially from Hermitian geometry and analysis, in the form they are used in the main part of the book are included.
Publisher: World Scientific
ISBN: 9814500828
Category : Mathematics
Languages : en
Pages : 265
Book Description
By the Kobayashi-Hitchin correspondence, the authors of this book mean the isomorphy of the moduli spaces Mst of stable holomorphic — resp. MHE of irreducible Hermitian-Einstein — structures in a differentiable complex vector bundle on a compact complex manifold. They give a complete proof of this result in the most general setting, and treat several applications and some new examples.After discussing the stability concept on arbitrary compact complex manifolds in Chapter 1, the authors consider, in Chapter 2, Hermitian-Einstein structures and prove the stability of irreducible Hermitian-Einstein bundles. This implies the existence of a natural map I from MHE to Mst which is bijective by the result of (the rather technical) Chapter 3. In Chapter 4 the moduli spaces involved are studied in detail, in particular it is shown that their natural analytic structures are isomorphic via I. Also a comparison theorem for moduli spaces of instantons resp. stable bundles is proved; this is the form in which the Kobayashi-Hitchin has been used in Donaldson theory to study differentiable structures of complex surfaces. The fact that I is an isomorphism of real analytic spaces is applied in Chapter 5 to show the openness of the stability condition and the existence of a natural Hermitian metric in the moduli space, and to study, at least in some cases, the dependence of Mst on the base metric used to define stability. Another application is a rather simple proof of Bogomolov's theorem on surfaces of type VII0. In Chapter 6, some moduli spaces of stable bundles are calculated to illustrate what can happen in the general (i.e. not necessarily Kähler) case compared to the algebraic or Kähler one. Finally, appendices containing results, especially from Hermitian geometry and analysis, in the form they are used in the main part of the book are included.