Author: Patrick Muldowney
Publisher: John Wiley & Sons
ISBN: 1119595495
Category : Mathematics
Languages : en
Pages : 56
Book Description
GAUGE INTEGRAL STRUCTURES FOR STOCHASTIC CALCULUS AND QUANTUM ELECTRODYNAMICS A stand-alone introduction to specific integration problems in the probabilistic theory of stochastic calculus Picking up where his previous book, A Modern Theory of Random Variation, left off, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics introduces readers to particular problems of integration in the probability-like theory of quantum mechanics. Written as a motivational explanation of the key points of the underlying mathematical theory, and including ample illustrations of the calculus, this book relies heavily on the mathematical theory set out in the author’s previous work. That said, this work stands alone and does not require a reading of A Modern Theory of Random Variation in order to be understandable. Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics takes a gradual, relaxed, and discursive approach to the subject in a successful attempt to engage the reader by exploring a narrower range of themes and problems. Organized around examples with accompanying introductions and explanations, the book covers topics such as: Stochastic calculus, including discussions of random variation, integration and probability, and stochastic processes Field theory, including discussions of gauges for product spaces and quantum electrodynamics Robust and thorough appendices, examples, illustrations, and introductions for each of the concepts discussed within An introduction to basic gauge integral theory (for those unfamiliar with the author’s previous book) The methods employed in this book show, for instance, that it is no longer necessary to resort to unreliable “Black Box” theory in financial calculus; that full mathematical rigor can now be combined with clarity and simplicity. Perfect for students and academics with even a passing interest in the application of the gauge integral technique pioneered by R. Henstock and J. Kurzweil, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics is an illuminating and insightful exploration of the complex mathematical topics contained within.
Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics
Author: Patrick Muldowney
Publisher: John Wiley & Sons
ISBN: 1119595495
Category : Mathematics
Languages : en
Pages : 56
Book Description
GAUGE INTEGRAL STRUCTURES FOR STOCHASTIC CALCULUS AND QUANTUM ELECTRODYNAMICS A stand-alone introduction to specific integration problems in the probabilistic theory of stochastic calculus Picking up where his previous book, A Modern Theory of Random Variation, left off, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics introduces readers to particular problems of integration in the probability-like theory of quantum mechanics. Written as a motivational explanation of the key points of the underlying mathematical theory, and including ample illustrations of the calculus, this book relies heavily on the mathematical theory set out in the author’s previous work. That said, this work stands alone and does not require a reading of A Modern Theory of Random Variation in order to be understandable. Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics takes a gradual, relaxed, and discursive approach to the subject in a successful attempt to engage the reader by exploring a narrower range of themes and problems. Organized around examples with accompanying introductions and explanations, the book covers topics such as: Stochastic calculus, including discussions of random variation, integration and probability, and stochastic processes Field theory, including discussions of gauges for product spaces and quantum electrodynamics Robust and thorough appendices, examples, illustrations, and introductions for each of the concepts discussed within An introduction to basic gauge integral theory (for those unfamiliar with the author’s previous book) The methods employed in this book show, for instance, that it is no longer necessary to resort to unreliable “Black Box” theory in financial calculus; that full mathematical rigor can now be combined with clarity and simplicity. Perfect for students and academics with even a passing interest in the application of the gauge integral technique pioneered by R. Henstock and J. Kurzweil, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics is an illuminating and insightful exploration of the complex mathematical topics contained within.
Publisher: John Wiley & Sons
ISBN: 1119595495
Category : Mathematics
Languages : en
Pages : 56
Book Description
GAUGE INTEGRAL STRUCTURES FOR STOCHASTIC CALCULUS AND QUANTUM ELECTRODYNAMICS A stand-alone introduction to specific integration problems in the probabilistic theory of stochastic calculus Picking up where his previous book, A Modern Theory of Random Variation, left off, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics introduces readers to particular problems of integration in the probability-like theory of quantum mechanics. Written as a motivational explanation of the key points of the underlying mathematical theory, and including ample illustrations of the calculus, this book relies heavily on the mathematical theory set out in the author’s previous work. That said, this work stands alone and does not require a reading of A Modern Theory of Random Variation in order to be understandable. Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics takes a gradual, relaxed, and discursive approach to the subject in a successful attempt to engage the reader by exploring a narrower range of themes and problems. Organized around examples with accompanying introductions and explanations, the book covers topics such as: Stochastic calculus, including discussions of random variation, integration and probability, and stochastic processes Field theory, including discussions of gauges for product spaces and quantum electrodynamics Robust and thorough appendices, examples, illustrations, and introductions for each of the concepts discussed within An introduction to basic gauge integral theory (for those unfamiliar with the author’s previous book) The methods employed in this book show, for instance, that it is no longer necessary to resort to unreliable “Black Box” theory in financial calculus; that full mathematical rigor can now be combined with clarity and simplicity. Perfect for students and academics with even a passing interest in the application of the gauge integral technique pioneered by R. Henstock and J. Kurzweil, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics is an illuminating and insightful exploration of the complex mathematical topics contained within.
Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics
Author: Patrick Muldowney
Publisher: John Wiley & Sons
ISBN: 1119595509
Category : Mathematics
Languages : en
Pages : 382
Book Description
GAUGE INTEGRAL STRUCTURES FOR STOCHASTIC CALCULUS AND QUANTUM ELECTRODYNAMICS A stand-alone introduction to specific integration problems in the probabilistic theory of stochastic calculus Picking up where his previous book, A Modern Theory of Random Variation, left off, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics introduces readers to particular problems of integration in the probability-like theory of quantum mechanics. Written as a motivational explanation of the key points of the underlying mathematical theory, and including ample illustrations of the calculus, this book relies heavily on the mathematical theory set out in the author’s previous work. That said, this work stands alone and does not require a reading of A Modern Theory of Random Variation in order to be understandable. Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics takes a gradual, relaxed, and discursive approach to the subject in a successful attempt to engage the reader by exploring a narrower range of themes and problems. Organized around examples with accompanying introductions and explanations, the book covers topics such as: Stochastic calculus, including discussions of random variation, integration and probability, and stochastic processes Field theory, including discussions of gauges for product spaces and quantum electrodynamics Robust and thorough appendices, examples, illustrations, and introductions for each of the concepts discussed within An introduction to basic gauge integral theory (for those unfamiliar with the author’s previous book) The methods employed in this book show, for instance, that it is no longer necessary to resort to unreliable “Black Box” theory in financial calculus; that full mathematical rigor can now be combined with clarity and simplicity. Perfect for students and academics with even a passing interest in the application of the gauge integral technique pioneered by R. Henstock and J. Kurzweil, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics is an illuminating and insightful exploration of the complex mathematical topics contained within.
Publisher: John Wiley & Sons
ISBN: 1119595509
Category : Mathematics
Languages : en
Pages : 382
Book Description
GAUGE INTEGRAL STRUCTURES FOR STOCHASTIC CALCULUS AND QUANTUM ELECTRODYNAMICS A stand-alone introduction to specific integration problems in the probabilistic theory of stochastic calculus Picking up where his previous book, A Modern Theory of Random Variation, left off, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics introduces readers to particular problems of integration in the probability-like theory of quantum mechanics. Written as a motivational explanation of the key points of the underlying mathematical theory, and including ample illustrations of the calculus, this book relies heavily on the mathematical theory set out in the author’s previous work. That said, this work stands alone and does not require a reading of A Modern Theory of Random Variation in order to be understandable. Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics takes a gradual, relaxed, and discursive approach to the subject in a successful attempt to engage the reader by exploring a narrower range of themes and problems. Organized around examples with accompanying introductions and explanations, the book covers topics such as: Stochastic calculus, including discussions of random variation, integration and probability, and stochastic processes Field theory, including discussions of gauges for product spaces and quantum electrodynamics Robust and thorough appendices, examples, illustrations, and introductions for each of the concepts discussed within An introduction to basic gauge integral theory (for those unfamiliar with the author’s previous book) The methods employed in this book show, for instance, that it is no longer necessary to resort to unreliable “Black Box” theory in financial calculus; that full mathematical rigor can now be combined with clarity and simplicity. Perfect for students and academics with even a passing interest in the application of the gauge integral technique pioneered by R. Henstock and J. Kurzweil, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics is an illuminating and insightful exploration of the complex mathematical topics contained within.
Introduction To The Mathematical Structure Of Quantum Mechanics, An: A Short Course For Mathematicians (2nd Edition)
Author: Franco Strocchi
Publisher: World Scientific Publishing Company
ISBN: 9813107367
Category : Science
Languages : en
Pages : 193
Book Description
The second printing contains a critical discussion of Dirac derivation of canonical quantization, which is instead deduced from general geometric structures. This book arises out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students. The mathematical structure of QM is formulated in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables, for a general physical system.The Dirac-von Neumann axioms are then derived. The description of states and observables as Hilbert space vectors and operators follows from the GNS and Gelfand-Naimark Theorems. The experimental existence of complementary observables for atomic systems is shown to imply the noncommutativity of the observable algebra, the distinctive feature of QM; for finite degrees of freedom, the Weyl algebra codifies the experimental complementarity of position and momentum (Heisenberg commutation relations) and Schrödinger QM follows from the von Neumann uniqueness theorem.The existence problem of the dynamics is related to the self-adjointness of the Hamiltonian and solved by the Kato-Rellich conditions on the potential, which also guarantee quantum stability for classically unbounded-below Hamiltonians. Examples are discussed which include the explanation of the discreteness of the atomic spectra.Because of the increasing interest in the relation between QM and stochastic processes, a final chapter is devoted to the functional integral approach (Feynman-Kac formula), to the formulation in terms of ground state correlations (the quantum mechanical analog of the Wightman functions) and their analytic continuation to imaginary time (Euclidean QM). The quantum particle on a circle is discussed in detail, as an example of the interplay between topology and functional integral, leading to the emergence of superselection rules and θ sectors.
Publisher: World Scientific Publishing Company
ISBN: 9813107367
Category : Science
Languages : en
Pages : 193
Book Description
The second printing contains a critical discussion of Dirac derivation of canonical quantization, which is instead deduced from general geometric structures. This book arises out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students. The mathematical structure of QM is formulated in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables, for a general physical system.The Dirac-von Neumann axioms are then derived. The description of states and observables as Hilbert space vectors and operators follows from the GNS and Gelfand-Naimark Theorems. The experimental existence of complementary observables for atomic systems is shown to imply the noncommutativity of the observable algebra, the distinctive feature of QM; for finite degrees of freedom, the Weyl algebra codifies the experimental complementarity of position and momentum (Heisenberg commutation relations) and Schrödinger QM follows from the von Neumann uniqueness theorem.The existence problem of the dynamics is related to the self-adjointness of the Hamiltonian and solved by the Kato-Rellich conditions on the potential, which also guarantee quantum stability for classically unbounded-below Hamiltonians. Examples are discussed which include the explanation of the discreteness of the atomic spectra.Because of the increasing interest in the relation between QM and stochastic processes, a final chapter is devoted to the functional integral approach (Feynman-Kac formula), to the formulation in terms of ground state correlations (the quantum mechanical analog of the Wightman functions) and their analytic continuation to imaginary time (Euclidean QM). The quantum particle on a circle is discussed in detail, as an example of the interplay between topology and functional integral, leading to the emergence of superselection rules and θ sectors.
Author:
Publisher: John Wiley & Sons
ISBN:
Category :
Languages : en
Pages : 324
Book Description
Publisher: John Wiley & Sons
ISBN:
Category :
Languages : en
Pages : 324
Book Description
Introduction To The Mathematical Structure Of Quantum Mechanics, An: A Short Course For Mathematicians
Author: Franco Strocchi
Publisher: World Scientific Publishing Company
ISBN: 981310659X
Category : Science
Languages : en
Pages : 157
Book Description
This book arises out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students. Rather than starting from the Dirac-Von Neumann axioms, the book offers a short presentation of the mathematical structure of QM using the C--algebraic structure of the observable based on the operational definition of measurements and the duality between states and observables. The description of states and observables as Hilbert space vectors and operators is then derived from the GNS and Gelfand-Naimark Theorems.For finite degrees of freedom, the Weyl algebra codifies the experimental limitations on the measurements of position and momentum (Heisenberg uncertainty relations) and Schroedinger QM follows from the von Neumann uniqueness theorem.The existence problem of the dynamics is related to the self-adjointness of the differential operator describing the Hamiltonian and solved by the Rellich-Kato theorems. Examples are discussed which include the explanation of the discreteness of the atomic spectra.Because of the increasing interest in the relation between QM and stochastic processes, a final chapter is devoted to the functional integral approach (Feynman-Kac formula), the formulation in terms of ground state correlations (Wightman functions) and their analytic continuation to imaginary time (Euclidean QM). The quantum particle on a circle as an example of the interplay between topology and functional integral is also discussed in detail.
Publisher: World Scientific Publishing Company
ISBN: 981310659X
Category : Science
Languages : en
Pages : 157
Book Description
This book arises out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students. Rather than starting from the Dirac-Von Neumann axioms, the book offers a short presentation of the mathematical structure of QM using the C--algebraic structure of the observable based on the operational definition of measurements and the duality between states and observables. The description of states and observables as Hilbert space vectors and operators is then derived from the GNS and Gelfand-Naimark Theorems.For finite degrees of freedom, the Weyl algebra codifies the experimental limitations on the measurements of position and momentum (Heisenberg uncertainty relations) and Schroedinger QM follows from the von Neumann uniqueness theorem.The existence problem of the dynamics is related to the self-adjointness of the differential operator describing the Hamiltonian and solved by the Rellich-Kato theorems. Examples are discussed which include the explanation of the discreteness of the atomic spectra.Because of the increasing interest in the relation between QM and stochastic processes, a final chapter is devoted to the functional integral approach (Feynman-Kac formula), the formulation in terms of ground state correlations (Wightman functions) and their analytic continuation to imaginary time (Euclidean QM). The quantum particle on a circle as an example of the interplay between topology and functional integral is also discussed in detail.
Nuclear Science Abstracts
Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 612
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 612
Book Description
Functional Integration
Author: Jean-Pierre Antoine
Publisher: Springer Science & Business Media
ISBN: 1461570352
Category : Computers
Languages : en
Pages : 354
Book Description
The idea of the workshop on Functional Integration, Theory and Applications, held in Louvain-Ia-Neuve from November 6 to 9 1979, was to put in close and informal contact, during a few days, active workers in the field. There is no doubt now that functional integration is a tool that is being applied in all branches of modern physics. Since the earlier works of Dirac and Feynman enormous progress has been made, but unfortunately we lack still a unifying and rigo rous mathematical framework to account for all the situations in which one is interested. We are then in presence of a rapid ly changing field in which new achievements, proposals, and points of view are the normal pattern. Considering this state of affairs we have decided to order the articles starting from the more fundamental and ambitious from the point of view of mathematical rigour, followed by ar ticles in which the main interest is the application to con crete physical situations. It is obvious that this ordering should not be taken too seriously since in many cases there will be an interplay of both objects.
Publisher: Springer Science & Business Media
ISBN: 1461570352
Category : Computers
Languages : en
Pages : 354
Book Description
The idea of the workshop on Functional Integration, Theory and Applications, held in Louvain-Ia-Neuve from November 6 to 9 1979, was to put in close and informal contact, during a few days, active workers in the field. There is no doubt now that functional integration is a tool that is being applied in all branches of modern physics. Since the earlier works of Dirac and Feynman enormous progress has been made, but unfortunately we lack still a unifying and rigo rous mathematical framework to account for all the situations in which one is interested. We are then in presence of a rapid ly changing field in which new achievements, proposals, and points of view are the normal pattern. Considering this state of affairs we have decided to order the articles starting from the more fundamental and ambitious from the point of view of mathematical rigour, followed by ar ticles in which the main interest is the application to con crete physical situations. It is obvious that this ordering should not be taken too seriously since in many cases there will be an interplay of both objects.
Stochastic Processes, Physics And Geometry Ii - Proceedings Of The Iii International Conference
Author: Sergio Albeverio
Publisher: World Scientific
ISBN: 981454969X
Category :
Languages : en
Pages : 758
Book Description
As was already evident from the previous two meetings, the theory of stochastic processes, the study of geometrical structures, and the investigation of certain physical problems are inter-related. In fact the trend in recent years has been towards stronger interactions between these areas. As a result, a large component of the contributions is concerned with the theory of stochastic processes, quantum theory, and their relations.
Publisher: World Scientific
ISBN: 981454969X
Category :
Languages : en
Pages : 758
Book Description
As was already evident from the previous two meetings, the theory of stochastic processes, the study of geometrical structures, and the investigation of certain physical problems are inter-related. In fact the trend in recent years has been towards stronger interactions between these areas. As a result, a large component of the contributions is concerned with the theory of stochastic processes, quantum theory, and their relations.
Physics Briefs
Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1058
Book Description
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1058
Book Description
Energy Research Abstracts
Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 1032
Book Description
Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 1032
Book Description
Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.