Galois Groups and Fundamental Groups on Riemann Surfaces

Galois Groups and Fundamental Groups on Riemann Surfaces PDF Author: Matthias Himmelmann
Publisher: GRIN Verlag
ISBN: 3668818967
Category : Mathematics
Languages : en
Pages : 46

Get Book Here

Book Description
Bachelor Thesis from the year 2018 in the subject Mathematics - Algebra, grade: 1,0, Free University of Berlin (Mathematik), language: English, abstract: This thesis deals with the correlation of the fundamental group and the Galois group, using their corresponding entities of covering spaces and field extensions. First it is viewed in the general setting of categories, using the language of Galois categories. It is shown that the categories of the finite étale algebras and the category of covering spaces are correlated, which gives the fact that the profinite completion of the fundamental group and the absolute Galois group are similar. More specifically, on Riemann surfaces it is shown that there exists an anti-equivalence of categories between the finite field extensions of the meromorphic functions of a compact, connected Riemann Surface X and the category of branched coverings of X. A more explicit theorem, that provides an isomorphism between a specific Galois Group and the profinite Completion of the Fundamental Group of a pointed X, gives more insight on the behaviour of these two groups.

Galois Groups and Fundamental Groups

Galois Groups and Fundamental Groups PDF Author: Tamás Szamuely
Publisher: Cambridge University Press
ISBN: 0521888506
Category : Mathematics
Languages : en
Pages : 281

Get Book Here

Book Description
Assuming little technical background, the author presents the strong analogies between these two concepts starting at an elementary level.

Galois Groups and Fundamental Groups

Galois Groups and Fundamental Groups PDF Author: Leila Schneps
Publisher: Cambridge University Press
ISBN: 9780521808316
Category : Mathematics
Languages : en
Pages : 486

Get Book Here

Book Description
Table of contents

Galois Theory, Coverings, and Riemann Surfaces

Galois Theory, Coverings, and Riemann Surfaces PDF Author: Askold Khovanskii
Publisher: Springer Science & Business Media
ISBN: 3642388418
Category : Mathematics
Languages : en
Pages : 86

Get Book Here

Book Description
The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to questions of solvability of algebraic equations in explicit form. The second part describes a surprising analogy between the fundamental theorem of Galois theory and the classification of coverings over a topological space. The third part contains a geometric description of finite algebraic extensions of the field of meromorphic functions on a Riemann surface and provides an introduction to the topological Galois theory developed by the author. All results are presented in the same elementary and self-contained manner as classical Galois theory, making this book both useful and interesting to readers with a variety of backgrounds in mathematics, from advanced undergraduate students to researchers.

Groups as Galois Groups

Groups as Galois Groups PDF Author: Helmut Völklein
Publisher: Cambridge University Press
ISBN: 9780521562805
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
Develops the mathematical background and recent results on the Inverse Galois Problem.

Topics in Galois Theory

Topics in Galois Theory PDF Author: Jean-Pierre Serre
Publisher: CRC Press
ISBN: 1439865256
Category : Mathematics
Languages : en
Pages : 136

Get Book Here

Book Description
This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt constructi

Moduli Spaces of Riemann Surfaces

Moduli Spaces of Riemann Surfaces PDF Author: Benson Farb
Publisher: American Mathematical Soc.
ISBN: 0821898876
Category : Mathematics
Languages : en
Pages : 371

Get Book Here

Book Description
Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.

Algebraic Curves and Riemann Surfaces

Algebraic Curves and Riemann Surfaces PDF Author: Rick Miranda
Publisher: American Mathematical Soc.
ISBN: 0821802682
Category : Mathematics
Languages : en
Pages : 414

Get Book Here

Book Description
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.

The Monodromy Group

The Monodromy Group PDF Author: Henryk Zoladek
Publisher: Springer Science & Business Media
ISBN: 3764375361
Category : Mathematics
Languages : en
Pages : 589

Get Book Here

Book Description
In singularity theory and algebraic geometry, the monodromy group is embodied in the Picard-Lefschetz formula and the Picard-Fuchs equations. It has applications in the weakened 16th Hilbert problem and in mixed Hodge structures. There is a deep connection of monodromy theory with Galois theory of differential equations and algebraic functions. In covering these and other topics, this book underlines the unifying role of the monogropy group.

Algebraic Groups and Differential Galois Theory

Algebraic Groups and Differential Galois Theory PDF Author: Teresa Crespo
Publisher: American Mathematical Soc.
ISBN: 082185318X
Category : Computers
Languages : en
Pages : 242

Get Book Here

Book Description
Differential Galois theory has seen intense research activity during the last decades in several directions: elaboration of more general theories, computational aspects, model theoretic approaches, applications to classical and quantum mechanics as well as to other mathematical areas such as number theory. This book intends to introduce the reader to this subject by presenting Picard-Vessiot theory, i.e. Galois theory of linear differential equations, in a self-contained way. The needed prerequisites from algebraic geometry and algebraic groups are contained in the first two parts of the book. The third part includes Picard-Vessiot extensions, the fundamental theorem of Picard-Vessiot theory, solvability by quadratures, Fuchsian equations, monodromy group and Kovacic's algorithm. Over one hundred exercises will help to assimilate the concepts and to introduce the reader to some topics beyond the scope of this book. This book is suitable for a graduate course in differential Galois theory. The last chapter contains several suggestions for further reading encouraging the reader to enter more deeply into different topics of differential Galois theory or related fields.