Fuzzy Logic, Identification and Predictive Control

Fuzzy Logic, Identification and Predictive Control PDF Author: Jairo Jose Espinosa Oviedo
Publisher: Springer Science & Business Media
ISBN: 1846280877
Category : Technology & Engineering
Languages : en
Pages : 274

Get Book Here

Book Description
Modern industrial processes and systems require adaptable advanced control protocols able to deal with circumstances demanding "judgement” rather than simple "yes/no”, "on/off” responses: circumstances where a linguistic description is often more relevant than a cut-and-dried numerical one. The ability of fuzzy systems to handle numeric and linguistic information within a single framework renders them efficacious for this purpose. Fuzzy Logic, Identification and Predictive Control first shows you how to construct static and dynamic fuzzy models using the numerical data from a variety of real industrial systems and simulations. The second part exploits such models to design control systems employing techniques like data mining. This monograph presents a combination of fuzzy control theory and industrial serviceability that will make a telling contribution to your research whether in the academic or industrial sphere and also serves as a fine roundup of the fuzzy control area for the graduate student.

Fuzzy Logic, Identification and Predictive Control

Fuzzy Logic, Identification and Predictive Control PDF Author: Jairo Jose Espinosa Oviedo
Publisher: Springer Science & Business Media
ISBN: 1846280877
Category : Technology & Engineering
Languages : en
Pages : 274

Get Book Here

Book Description
Modern industrial processes and systems require adaptable advanced control protocols able to deal with circumstances demanding "judgement” rather than simple "yes/no”, "on/off” responses: circumstances where a linguistic description is often more relevant than a cut-and-dried numerical one. The ability of fuzzy systems to handle numeric and linguistic information within a single framework renders them efficacious for this purpose. Fuzzy Logic, Identification and Predictive Control first shows you how to construct static and dynamic fuzzy models using the numerical data from a variety of real industrial systems and simulations. The second part exploits such models to design control systems employing techniques like data mining. This monograph presents a combination of fuzzy control theory and industrial serviceability that will make a telling contribution to your research whether in the academic or industrial sphere and also serves as a fine roundup of the fuzzy control area for the graduate student.

Fuzzy Logic, Identification and Predictive Control

Fuzzy Logic, Identification and Predictive Control PDF Author: Jairo Jose Espinosa Oviedo
Publisher: Springer
ISBN: 9781848007758
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
Modern industrial processes and systems require adaptable advanced control protocols able to deal with circumstances demanding "judgement” rather than simple "yes/no”, "on/off” responses: circumstances where a linguistic description is often more relevant than a cut-and-dried numerical one. The ability of fuzzy systems to handle numeric and linguistic information within a single framework renders them efficacious for this purpose. Fuzzy Logic, Identification and Predictive Control first shows you how to construct static and dynamic fuzzy models using the numerical data from a variety of real industrial systems and simulations. The second part exploits such models to design control systems employing techniques like data mining. This monograph presents a combination of fuzzy control theory and industrial serviceability that will make a telling contribution to your research whether in the academic or industrial sphere and also serves as a fine roundup of the fuzzy control area for the graduate student.

Fuzzy Modeling for Control

Fuzzy Modeling for Control PDF Author: Robert Babuška
Publisher: Springer Science & Business Media
ISBN: 9401148686
Category : Mathematics
Languages : en
Pages : 269

Get Book Here

Book Description
Rule-based fuzzy modeling has been recognised as a powerful technique for the modeling of partly-known nonlinear systems. Fuzzy models can effectively integrate information from different sources, such as physical laws, empirical models, measurements and heuristics. Application areas of fuzzy models include prediction, decision support, system analysis, control design, etc. Fuzzy Modeling for Control addresses fuzzy modeling from the systems and control engineering points of view. It focuses on the selection of appropriate model structures, on the acquisition of dynamic fuzzy models from process measurements (fuzzy identification), and on the design of nonlinear controllers based on fuzzy models. To automatically generate fuzzy models from measurements, a comprehensive methodology is developed which employs fuzzy clustering techniques to partition the available data into subsets characterized by locally linear behaviour. The relationships between the presented identification method and linear regression are exploited, allowing for the combination of fuzzy logic techniques with standard system identification tools. Attention is paid to the trade-off between the accuracy and transparency of the obtained fuzzy models. Control design based on a fuzzy model of a nonlinear dynamic process is addressed, using the concepts of model-based predictive control and internal model control with an inverted fuzzy model. To this end, methods to exactly invert specific types of fuzzy models are presented. In the context of predictive control, branch-and-bound optimization is applied. The main features of the presented techniques are illustrated by means of simple examples. In addition, three real-world applications are described. Finally, software tools for building fuzzy models from measurements are available from the author.

Analysis and Synthesis of Fuzzy Control Systems

Analysis and Synthesis of Fuzzy Control Systems PDF Author: Gang Feng
Publisher: CRC Press
ISBN: 1420092650
Category : Technology & Engineering
Languages : en
Pages : 302

Get Book Here

Book Description
Fuzzy logic control (FLC) has proven to be a popular control methodology for many complex systems in industry, and is often used with great success as an alternative to conventional control techniques. However, because it is fundamentally model free, conventional FLC suffers from a lack of tools for systematic stability analysis and controller design. To address this problem, many model-based fuzzy control approaches have been developed, with the fuzzy dynamic model or the Takagi and Sugeno (T–S) fuzzy model-based approaches receiving the greatest attention. Analysis and Synthesis of Fuzzy Control Systems: A Model-Based Approach offers a unique reference devoted to the systematic analysis and synthesis of model-based fuzzy control systems. After giving a brief review of the varieties of FLC, including the T–S fuzzy model-based control, it fully explains the fundamental concepts of fuzzy sets, fuzzy logic, and fuzzy systems. This enables the book to be self-contained and provides a basis for later chapters, which cover: T–S fuzzy modeling and identification via nonlinear models or data Stability analysis of T–S fuzzy systems Stabilization controller synthesis as well as robust H∞ and observer and output feedback controller synthesis Robust controller synthesis of uncertain T–S fuzzy systems Time-delay T–S fuzzy systems Fuzzy model predictive control Robust fuzzy filtering Adaptive control of T–S fuzzy systems A reference for scientists and engineers in systems and control, the book also serves the needs of graduate students exploring fuzzy logic control. It readily demonstrates that conventional control technology and fuzzy logic control can be elegantly combined and further developed so that disadvantages of conventional FLC can be avoided and the horizon of conventional control technology greatly extended. Many chapters feature application simulation examples and practical numerical examples based on MATLAB®.

Model Predictive Control System Design and Implementation Using MATLAB®

Model Predictive Control System Design and Implementation Using MATLAB® PDF Author: Liuping Wang
Publisher: Springer Science & Business Media
ISBN: 1848823312
Category : Technology & Engineering
Languages : en
Pages : 398

Get Book Here

Book Description
Model Predictive Control System Design and Implementation Using MATLAB® proposes methods for design and implementation of MPC systems using basis functions that confer the following advantages: - continuous- and discrete-time MPC problems solved in similar design frameworks; - a parsimonious parametric representation of the control trajectory gives rise to computationally efficient algorithms and better on-line performance; and - a more general discrete-time representation of MPC design that becomes identical to the traditional approach for an appropriate choice of parameters. After the theoretical presentation, coverage is given to three industrial applications. The subject of quadratic programming, often associated with the core optimization algorithms of MPC is also introduced and explained. The technical contents of this book is mainly based on advances in MPC using state-space models and basis functions. This volume includes numerous analytical examples and problems and MATLAB® programs and exercises.

Practical Design and Application of Model Predictive Control

Practical Design and Application of Model Predictive Control PDF Author: Nassim Khaled
Publisher: Butterworth-Heinemann
ISBN: 0128139196
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
Practical Design and Application of Model Predictive Control is a self-learning resource on how to design, tune and deploy an MPC using MATLAB® and Simulink®. This reference is one of the most detailed publications on how to design and tune MPC controllers. Examples presented range from double-Mass spring system, ship heading and speed control, robustness analysis through Monte-Carlo simulations, photovoltaic optimal control, and energy management of power-split and air-handling control. Readers will also learn how to embed the designed MPC controller in a real-time platform such as Arduino®. The selected problems are nonlinear and challenging, and thus serve as an excellent experimental, dynamic system to show the reader the capability of MPC. The step-by-step solutions of the problems are thoroughly documented to allow the reader to easily replicate the results. Furthermore, the MATLAB® and Simulink® codes for the solutions are available for free download. Readers can connect with the authors through the dedicated website which includes additional free resources at www.practicalmpc.com. - Illustrates how to design, tune and deploy MPC for projects in a quick manner - Demonstrates a variety of applications that are solved using MATLAB® and Simulink® - Bridges the gap in providing a number of realistic problems with very hands-on training - Provides MATLAB® and Simulink® code solutions. This includes nonlinear plant models that the reader can use for other projects and research work - Presents application problems with solutions to help reinforce the information learned

Fuzzy Logic Control

Fuzzy Logic Control PDF Author: H. B. Verbruggen
Publisher: World Scientific
ISBN: 9789810238254
Category : Technology & Engineering
Languages : en
Pages : 344

Get Book Here

Book Description
Fuzzy logic control has become an important methodology in control engineering. This volume deals with applications of fuzzy logic control in various domains. The contributions are divided into three parts. The first part consists of two state-of-the-art tutorials on fuzzy control and fuzzy modeling. Surveys of advanced methodologies are included in the second part. These surveys address fuzzy decision making and control, fault detection, isolation and diagnosis, complexity reduction in fuzzy systems and neuro-fuzzy methods. The third part contains application-oriented contributions from various fields, such as process industry, cement and ceramics, vehicle control and traffic management, electromechanical and production systems, avionics, biotechnology and medical applications. The book is intended for researchers both from the academic world and from industry.

Model Predictive Control System Design and Implementation Using MATLAB®

Model Predictive Control System Design and Implementation Using MATLAB® PDF Author: Liuping Wang
Publisher: Springer Science & Business Media
ISBN: 1848823304
Category : Technology & Engineering
Languages : en
Pages : 398

Get Book Here

Book Description
Model Predictive Control System Design and Implementation Using MATLAB® proposes methods for design and implementation of MPC systems using basis functions that confer the following advantages: - continuous- and discrete-time MPC problems solved in similar design frameworks; - a parsimonious parametric representation of the control trajectory gives rise to computationally efficient algorithms and better on-line performance; and - a more general discrete-time representation of MPC design that becomes identical to the traditional approach for an appropriate choice of parameters. After the theoretical presentation, coverage is given to three industrial applications. The subject of quadratic programming, often associated with the core optimization algorithms of MPC is also introduced and explained. The technical contents of this book is mainly based on advances in MPC using state-space models and basis functions. This volume includes numerous analytical examples and problems and MATLAB® programs and exercises.

Virtual Inertia Synthesis and Control

Virtual Inertia Synthesis and Control PDF Author: Thongchart Kerdphol
Publisher: Springer Nature
ISBN: 3030579611
Category : Technology & Engineering
Languages : en
Pages : 273

Get Book Here

Book Description
This book provides a thorough understanding of the basic principles, synthesis, analysis, and control of virtual inertia systems. It uses the latest technical tools to mitigate power system stability and control problems under the presence of high distributed generators (DGs) and renewable energy sources (RESs) penetration. This book uses a simple virtual inertia control structure based on the frequency response model, complemented with various control methods and algorithms to achieve an adaptive virtual inertia control respect to the frequency stability and control issues. The chapters capture the important aspects in virtual inertia synthesis and control with the objective of solving the stability and control problems regarding the changes of system inertia caused by the integration of DGs/RESs. Different topics on the synthesis and application of virtual inertia are thoroughly covered with the description and analysis of numerous conventional and modern control methods for enhancing the full spectrum of power system stability and control. Filled with illustrative examples, this book gives the necessary fundamentals and insight into practical aspects. This book stimulates further research and offers practical solutions to real-world power system stability and control problems with respect to the system inertia variation triggered by the integration of RESs/DGs. It will be of use to engineers, academic researchers, and university students interested in power systems dynamics, analysis, stability and control.

Real-time Iterative Learning Control

Real-time Iterative Learning Control PDF Author: Jian-Xin Xu
Publisher: Springer Science & Business Media
ISBN: 1848821751
Category : Technology & Engineering
Languages : en
Pages : 204

Get Book Here

Book Description
Real-time Iterative Learning Control demonstrates how the latest advances in iterative learning control (ILC) can be applied to a number of plants widely encountered in practice. The book gives a systematic introduction to real-time ILC design and source of illustrative case studies for ILC problem solving; the fundamental concepts, schematics, configurations and generic guidelines for ILC design and implementation are enhanced by a well-selected group of representative, simple and easy-to-learn example applications. Key issues in ILC design and implementation in linear and nonlinear plants pervading mechatronics and batch processes are addressed, in particular: ILC design in the continuous- and discrete-time domains; design in the frequency and time domains; design with problem-specific performance objectives including robustness and optimality; design in a modular approach by integration with other control techniques; and design by means of classical tools based on Bode plots and state space.