Author: Hua Harry Li
Publisher: Springer Science & Business Media
ISBN: 0585280002
Category : Mathematics
Languages : en
Pages : 455
Book Description
One of the attractions of fuzzy logic is its utility in solving many real engineering problems. As many have realised, the major obstacles in building a real intelligent machine involve dealing with random disturbances, processing large amounts of imprecise data, interacting with a dynamically changing environment, and coping with uncertainty. Neural-fuzzy techniques help one to solve many of these problems. Fuzzy Logic and Intelligent Systems reflects the most recent developments in neural networks and fuzzy logic, and their application in intelligent systems. In addition, the balance between theoretical work and applications makes the book suitable for both researchers and engineers, as well as for graduate students.
Fuzzy Logic and Intelligent Systems
Author: Hua Harry Li
Publisher: Springer Science & Business Media
ISBN: 0585280002
Category : Mathematics
Languages : en
Pages : 455
Book Description
One of the attractions of fuzzy logic is its utility in solving many real engineering problems. As many have realised, the major obstacles in building a real intelligent machine involve dealing with random disturbances, processing large amounts of imprecise data, interacting with a dynamically changing environment, and coping with uncertainty. Neural-fuzzy techniques help one to solve many of these problems. Fuzzy Logic and Intelligent Systems reflects the most recent developments in neural networks and fuzzy logic, and their application in intelligent systems. In addition, the balance between theoretical work and applications makes the book suitable for both researchers and engineers, as well as for graduate students.
Publisher: Springer Science & Business Media
ISBN: 0585280002
Category : Mathematics
Languages : en
Pages : 455
Book Description
One of the attractions of fuzzy logic is its utility in solving many real engineering problems. As many have realised, the major obstacles in building a real intelligent machine involve dealing with random disturbances, processing large amounts of imprecise data, interacting with a dynamically changing environment, and coping with uncertainty. Neural-fuzzy techniques help one to solve many of these problems. Fuzzy Logic and Intelligent Systems reflects the most recent developments in neural networks and fuzzy logic, and their application in intelligent systems. In addition, the balance between theoretical work and applications makes the book suitable for both researchers and engineers, as well as for graduate students.
Industrial Applications of Fuzzy Logic and Intelligent Systems
Author: John Yen
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
ISBN:
Category : Computers
Languages : en
Pages : 414
Book Description
Introduction to fuzzy logic control. History of industrial applications of fuzzy logic in Japan. Fuzzy logic applications at OMRON Corporation. Survey of fuzzy logic applications in image-processing equipment. Applications of neural networks and fuzzy logic to consumer products. Knowledge processing based on fuzzy associative memory and its application to a helicopter control. Fuzzy logic hierarchical controller for a recuperative turboshaft engine: from mode selection to mode melding. Progress in reseacrh on autonomous vehicle motion planning. Autonomous navigation of a mobile robot using the behaviorist theory and VLSI fuzzy inferencing chips. Artificial intelligence, fuzzy logic, and sensor clusters. Intelligent sensor systems for space operations. Two automated tuning methods for fuzzy logic-based process control. On fuzzy control of nonchlorofluorocarbon air-conditioning systems. Fuzzy logic applications in Europe. Software tools for fuzzy control.
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
ISBN:
Category : Computers
Languages : en
Pages : 414
Book Description
Introduction to fuzzy logic control. History of industrial applications of fuzzy logic in Japan. Fuzzy logic applications at OMRON Corporation. Survey of fuzzy logic applications in image-processing equipment. Applications of neural networks and fuzzy logic to consumer products. Knowledge processing based on fuzzy associative memory and its application to a helicopter control. Fuzzy logic hierarchical controller for a recuperative turboshaft engine: from mode selection to mode melding. Progress in reseacrh on autonomous vehicle motion planning. Autonomous navigation of a mobile robot using the behaviorist theory and VLSI fuzzy inferencing chips. Artificial intelligence, fuzzy logic, and sensor clusters. Intelligent sensor systems for space operations. Two automated tuning methods for fuzzy logic-based process control. On fuzzy control of nonchlorofluorocarbon air-conditioning systems. Fuzzy logic applications in Europe. Software tools for fuzzy control.
An Introduction to Fuzzy Logic Applications in Intelligent Systems
Author: Ronald R. Yager
Publisher: Springer Science & Business Media
ISBN: 1461536405
Category : Computers
Languages : en
Pages : 358
Book Description
An Introduction to Fuzzy Logic Applications in Intelligent Systems consists of a collection of chapters written by leading experts in the field of fuzzy sets. Each chapter addresses an area where fuzzy sets have been applied to situations broadly related to intelligent systems. The volume provides an introduction to and an overview of recent applications of fuzzy sets to various areas of intelligent systems. Its purpose is to provide information and easy access for people new to the field. The book also serves as an excellent reference for researchers in the field and those working in the specifics of systems development. People in computer science, especially those in artificial intelligence, knowledge-based systems, and intelligent systems will find this to be a valuable sourcebook. Engineers, particularly control engineers, will also have a strong interest in this book. Finally, the book will be of interest to researchers working in decision support systems, operations research, decision theory, management science and applied mathematics. An Introduction to Fuzzy Logic Applications in Intelligent Systems may also be used as an introductory text and, as such, it is tutorial in nature.
Publisher: Springer Science & Business Media
ISBN: 1461536405
Category : Computers
Languages : en
Pages : 358
Book Description
An Introduction to Fuzzy Logic Applications in Intelligent Systems consists of a collection of chapters written by leading experts in the field of fuzzy sets. Each chapter addresses an area where fuzzy sets have been applied to situations broadly related to intelligent systems. The volume provides an introduction to and an overview of recent applications of fuzzy sets to various areas of intelligent systems. Its purpose is to provide information and easy access for people new to the field. The book also serves as an excellent reference for researchers in the field and those working in the specifics of systems development. People in computer science, especially those in artificial intelligence, knowledge-based systems, and intelligent systems will find this to be a valuable sourcebook. Engineers, particularly control engineers, will also have a strong interest in this book. Finally, the book will be of interest to researchers working in decision support systems, operations research, decision theory, management science and applied mathematics. An Introduction to Fuzzy Logic Applications in Intelligent Systems may also be used as an introductory text and, as such, it is tutorial in nature.
Fuzzy and Neuro-Fuzzy Intelligent Systems
Author: Ernest Czogala
Publisher: Physica
ISBN: 3790818534
Category : Computers
Languages : en
Pages : 207
Book Description
Intelligence systems. We perfonn routine tasks on a daily basis, as for example: • recognition of faces of persons (also faces not seen for many years), • identification of dangerous situations during car driving, • deciding to buy or sell stock, • reading hand-written symbols, • discriminating between vines made from Sauvignon Blanc, Syrah or Merlot grapes, and others. Human experts carry out the following: • diagnosing diseases, • localizing faults in electronic circuits, • optimal moves in chess games. It is possible to design artificial systems to replace or "duplicate" the human expert. There are many possible definitions of intelligence systems. One of them is that: an intelligence system is a system able to make decisions that would be regarded as intelligent ifthey were observed in humans. Intelligence systems adapt themselves using some example situations (inputs of a system) and their correct decisions (system's output). The system after this learning phase can make decisions automatically for future situations. This system can also perfonn tasks difficult or impossible to do for humans, as for example: compression of signals and digital channel equalization.
Publisher: Physica
ISBN: 3790818534
Category : Computers
Languages : en
Pages : 207
Book Description
Intelligence systems. We perfonn routine tasks on a daily basis, as for example: • recognition of faces of persons (also faces not seen for many years), • identification of dangerous situations during car driving, • deciding to buy or sell stock, • reading hand-written symbols, • discriminating between vines made from Sauvignon Blanc, Syrah or Merlot grapes, and others. Human experts carry out the following: • diagnosing diseases, • localizing faults in electronic circuits, • optimal moves in chess games. It is possible to design artificial systems to replace or "duplicate" the human expert. There are many possible definitions of intelligence systems. One of them is that: an intelligence system is a system able to make decisions that would be regarded as intelligent ifthey were observed in humans. Intelligence systems adapt themselves using some example situations (inputs of a system) and their correct decisions (system's output). The system after this learning phase can make decisions automatically for future situations. This system can also perfonn tasks difficult or impossible to do for humans, as for example: compression of signals and digital channel equalization.
Type-2 Fuzzy Logic in Intelligent Control Applications
Author: Oscar Castillo
Publisher: Springer Science & Business Media
ISBN: 3642246621
Category : Computers
Languages : en
Pages : 187
Book Description
We describe in this book, hybrid intelligent systems based mainly on type-2 fuzzy logic for intelligent control. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, and bio-inspired optimization algorithms, which can be used to produce powerful automatic control systems. The book is organized in three main parts, which contain a group of chapters around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which can be the basis for achieving intelligent control with interval type-2 fuzzy logic. The second part of the book is comprised of chapters with the main theme of evolutionary optimization of type-2 fuzzy systems in intelligent control with the aim of designing optimal type-2 fuzzy controllers for complex control problems in diverse areas of application, including mobile robotics, aircraft dynamics systems and hardware implementations. The third part of the book is formed with chapters dealing with the theme of bio-inspired optimization of type-2 fuzzy systems in intelligent control, which includes the application of particle swarm intelligence and ant colony optimization algorithms for obtaining optimal type-2 fuzzy controllers.
Publisher: Springer Science & Business Media
ISBN: 3642246621
Category : Computers
Languages : en
Pages : 187
Book Description
We describe in this book, hybrid intelligent systems based mainly on type-2 fuzzy logic for intelligent control. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, and bio-inspired optimization algorithms, which can be used to produce powerful automatic control systems. The book is organized in three main parts, which contain a group of chapters around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which can be the basis for achieving intelligent control with interval type-2 fuzzy logic. The second part of the book is comprised of chapters with the main theme of evolutionary optimization of type-2 fuzzy systems in intelligent control with the aim of designing optimal type-2 fuzzy controllers for complex control problems in diverse areas of application, including mobile robotics, aircraft dynamics systems and hardware implementations. The third part of the book is formed with chapters dealing with the theme of bio-inspired optimization of type-2 fuzzy systems in intelligent control, which includes the application of particle swarm intelligence and ant colony optimization algorithms for obtaining optimal type-2 fuzzy controllers.
Fuzzy Neural Intelligent Systems
Author: Hongxing Li
Publisher: CRC Press
ISBN: 9781420057997
Category : Technology & Engineering
Languages : en
Pages : 398
Book Description
Although fuzzy systems and neural networks are central to the field of soft computing, most research work has focused on the development of the theories, algorithms, and designs of systems for specific applications. There has been little theoretical support for fuzzy neural systems, especially their mathematical foundations. Fuzzy Neural Intelligent Systems fills this gap. It develops a mathematical basis for fuzzy neural networks, offers a better way of combining fuzzy logic systems with neural networks, and explores some of their engineering applications. Dividing their focus into three main areas of interest, the authors give a systematic, comprehensive treatment of the relevant concepts and modern practical applications: Fundamental concepts and theories for fuzzy systems and neural networks. Foundation for fuzzy neural networks and important related topics Case examples for neuro-fuzzy systems, fuzzy systems, neural network systems, and fuzzy-neural systems Suitable for self-study, as a reference, and ideal as a textbook, Fuzzy Neural Intelligent Systems is accessible to students with a basic background in linear algebra and engineering mathematics. Mastering the material in this textbook will prepare students to better understand, design, and implement fuzzy neural systems, develop new applications, and further advance the field.
Publisher: CRC Press
ISBN: 9781420057997
Category : Technology & Engineering
Languages : en
Pages : 398
Book Description
Although fuzzy systems and neural networks are central to the field of soft computing, most research work has focused on the development of the theories, algorithms, and designs of systems for specific applications. There has been little theoretical support for fuzzy neural systems, especially their mathematical foundations. Fuzzy Neural Intelligent Systems fills this gap. It develops a mathematical basis for fuzzy neural networks, offers a better way of combining fuzzy logic systems with neural networks, and explores some of their engineering applications. Dividing their focus into three main areas of interest, the authors give a systematic, comprehensive treatment of the relevant concepts and modern practical applications: Fundamental concepts and theories for fuzzy systems and neural networks. Foundation for fuzzy neural networks and important related topics Case examples for neuro-fuzzy systems, fuzzy systems, neural network systems, and fuzzy-neural systems Suitable for self-study, as a reference, and ideal as a textbook, Fuzzy Neural Intelligent Systems is accessible to students with a basic background in linear algebra and engineering mathematics. Mastering the material in this textbook will prepare students to better understand, design, and implement fuzzy neural systems, develop new applications, and further advance the field.
Fuzzy Logic in Intelligent System Design
Author: Patricia Melin
Publisher: Springer
ISBN: 3319671375
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
This book describes recent advances in the use of fuzzy logic for the design of hybrid intelligent systems based on nature-inspired optimization and their applications in areas such as intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction and optimization of complex problems. Based on papers presented at the North American Fuzzy Information Processing Society Annual Conference (NAFIPS 2017), held in Cancun, Mexico from 16 to 18 October 2017, the book is divided into nine main parts, the first of which first addresses theoretical aspects, and proposes new concepts and algorithms based on type-1 fuzzy systems. The second part consists of papers on new concepts and algorithms for type-2 fuzzy systems, and on applications of type-2 fuzzy systems in diverse areas, such as time series prediction and pattern recognition. In turn, the third part contains papers that present enhancements to meta-heuristics based on fuzzy logic techniques describing new nature-inspired optimization algorithms that use fuzzy dynamic adaptation of parameters. The fourth part presents emergent intelligent models, which range from quantum algorithms to cellular automata. The fifth part explores applications of fuzzy logic in diverse areas of medicine, such as the diagnosis of hypertension and heart diseases. The sixth part describes new computational intelligence algorithms and their applications in different areas of intelligent control, while the seventh examines the use of fuzzy logic in different mathematic models. The eight part deals with a diverse range of applications of fuzzy logic, ranging from environmental to autonomous navigation, while the ninth covers theoretical concepts of fuzzy models
Publisher: Springer
ISBN: 3319671375
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
This book describes recent advances in the use of fuzzy logic for the design of hybrid intelligent systems based on nature-inspired optimization and their applications in areas such as intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction and optimization of complex problems. Based on papers presented at the North American Fuzzy Information Processing Society Annual Conference (NAFIPS 2017), held in Cancun, Mexico from 16 to 18 October 2017, the book is divided into nine main parts, the first of which first addresses theoretical aspects, and proposes new concepts and algorithms based on type-1 fuzzy systems. The second part consists of papers on new concepts and algorithms for type-2 fuzzy systems, and on applications of type-2 fuzzy systems in diverse areas, such as time series prediction and pattern recognition. In turn, the third part contains papers that present enhancements to meta-heuristics based on fuzzy logic techniques describing new nature-inspired optimization algorithms that use fuzzy dynamic adaptation of parameters. The fourth part presents emergent intelligent models, which range from quantum algorithms to cellular automata. The fifth part explores applications of fuzzy logic in diverse areas of medicine, such as the diagnosis of hypertension and heart diseases. The sixth part describes new computational intelligence algorithms and their applications in different areas of intelligent control, while the seventh examines the use of fuzzy logic in different mathematic models. The eight part deals with a diverse range of applications of fuzzy logic, ranging from environmental to autonomous navigation, while the ninth covers theoretical concepts of fuzzy models
Fuzzy Logic Applications in Engineering Science
Author: J. Harris
Publisher: Springer Science & Business Media
ISBN: 1402040784
Category : Technology & Engineering
Languages : en
Pages : 232
Book Description
Fuzzy logic is a relatively new concept in science applications. Hitherto, fuzzy logic has been a conceptual process applied in the field of risk management. Its potential applicability is much wider than that, however, and its particular suitability for expanding our understanding of processes and information in science and engineering in our post-modern world is only just beginning to be appreciated. Written as a companion text to the author’s earlier volume "An Introduction to Fuzzy Logic Applications", the book is aimed at professional engineers and students and those with an interest in exploring the potential of fuzzy logic as an information processing kit with a wide variety of practical applications in the field of engineering science and develops themes and topics introduced in the author’s earlier text.
Publisher: Springer Science & Business Media
ISBN: 1402040784
Category : Technology & Engineering
Languages : en
Pages : 232
Book Description
Fuzzy logic is a relatively new concept in science applications. Hitherto, fuzzy logic has been a conceptual process applied in the field of risk management. Its potential applicability is much wider than that, however, and its particular suitability for expanding our understanding of processes and information in science and engineering in our post-modern world is only just beginning to be appreciated. Written as a companion text to the author’s earlier volume "An Introduction to Fuzzy Logic Applications", the book is aimed at professional engineers and students and those with an interest in exploring the potential of fuzzy logic as an information processing kit with a wide variety of practical applications in the field of engineering science and develops themes and topics introduced in the author’s earlier text.
Neural Fuzzy Systems
Author: Ching Tai Lin
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 824
Book Description
Neural Fuzzy Systems provides a comprehensive, up-to-date introduction to the basic theories of fuzzy systems and neural networks, as well as an exploration of how these two fields can be integrated to create Neural-Fuzzy Systems. It includes Matlab software, with a Neural Network Toolkit, and a Fuzzy System Toolkit.
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 824
Book Description
Neural Fuzzy Systems provides a comprehensive, up-to-date introduction to the basic theories of fuzzy systems and neural networks, as well as an exploration of how these two fields can be integrated to create Neural-Fuzzy Systems. It includes Matlab software, with a Neural Network Toolkit, and a Fuzzy System Toolkit.
Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine
Author: Oscar Castillo
Publisher: Springer Nature
ISBN: 3030341356
Category : Technology & Engineering
Languages : en
Pages : 354
Book Description
This book describes the latest advances in fuzzy logic, neural networks and optimization algorithms, as well as their hybrid combinations, and their applications in areas such as: intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction, and optimization of complex problems. The book is divided into five main parts. The first part proposes new concepts and algorithms based on type-1 and type-2 fuzzy logic and their applications; the second explores new concepts and algorithms in neural networks and fuzzy logic applied to recognition. The third part examines the theory and practice of meta-heuristics in various areas of application, while the fourth highlights diverse applications of fuzzy logic, neural networks and hybrid intelligent systems in medical contexts. Finally, the fifth part focuses on applications of fuzzy logic, neural networks and meta-heuristics to robotics problems.
Publisher: Springer Nature
ISBN: 3030341356
Category : Technology & Engineering
Languages : en
Pages : 354
Book Description
This book describes the latest advances in fuzzy logic, neural networks and optimization algorithms, as well as their hybrid combinations, and their applications in areas such as: intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction, and optimization of complex problems. The book is divided into five main parts. The first part proposes new concepts and algorithms based on type-1 and type-2 fuzzy logic and their applications; the second explores new concepts and algorithms in neural networks and fuzzy logic applied to recognition. The third part examines the theory and practice of meta-heuristics in various areas of application, while the fourth highlights diverse applications of fuzzy logic, neural networks and hybrid intelligent systems in medical contexts. Finally, the fifth part focuses on applications of fuzzy logic, neural networks and meta-heuristics to robotics problems.