Author: John N. Mordeson
Publisher: Springer
ISBN: 9783540808275
Category : Computers
Languages : en
Pages : 300
Book Description
This book presents an up-to-date account of research in important topics of fuzzy group theory. It concentrates on the theoretical aspects of fuzzy subgroups of a group. It includes applications to abstract recognition problems and to coding theory. The book begins with basic properties of fuzzy subgroups. Fuzzy subgroups of Hamiltonian, solvable, P-Hall, and nilpotent groups are discussed. Construction of free fuzzy subgroups is determined. Numerical invariants of fuzzy subgroups of Abelian groups are developed. The problem in group theory of obtaining conditions under which a group can be expressed as a direct product of its normal subgroups is considered. Methods for deriving fuzzy theorems from crisp ones are presented and the embedding of lattices of fuzzy subgroups into lattices of crisp groups is discussed as well as deriving membership functions from similarity relations. The material presented makes this book a good reference for graduate students and researchers working in fuzzy group theory.
Fuzzy Group Theory
Author: John N. Mordeson
Publisher: Springer
ISBN: 9783540808275
Category : Computers
Languages : en
Pages : 300
Book Description
This book presents an up-to-date account of research in important topics of fuzzy group theory. It concentrates on the theoretical aspects of fuzzy subgroups of a group. It includes applications to abstract recognition problems and to coding theory. The book begins with basic properties of fuzzy subgroups. Fuzzy subgroups of Hamiltonian, solvable, P-Hall, and nilpotent groups are discussed. Construction of free fuzzy subgroups is determined. Numerical invariants of fuzzy subgroups of Abelian groups are developed. The problem in group theory of obtaining conditions under which a group can be expressed as a direct product of its normal subgroups is considered. Methods for deriving fuzzy theorems from crisp ones are presented and the embedding of lattices of fuzzy subgroups into lattices of crisp groups is discussed as well as deriving membership functions from similarity relations. The material presented makes this book a good reference for graduate students and researchers working in fuzzy group theory.
Publisher: Springer
ISBN: 9783540808275
Category : Computers
Languages : en
Pages : 300
Book Description
This book presents an up-to-date account of research in important topics of fuzzy group theory. It concentrates on the theoretical aspects of fuzzy subgroups of a group. It includes applications to abstract recognition problems and to coding theory. The book begins with basic properties of fuzzy subgroups. Fuzzy subgroups of Hamiltonian, solvable, P-Hall, and nilpotent groups are discussed. Construction of free fuzzy subgroups is determined. Numerical invariants of fuzzy subgroups of Abelian groups are developed. The problem in group theory of obtaining conditions under which a group can be expressed as a direct product of its normal subgroups is considered. Methods for deriving fuzzy theorems from crisp ones are presented and the embedding of lattices of fuzzy subgroups into lattices of crisp groups is discussed as well as deriving membership functions from similarity relations. The material presented makes this book a good reference for graduate students and researchers working in fuzzy group theory.
Fuzzy Semigroups
Author: John N. Mordeson
Publisher: Springer
ISBN: 3540371257
Category : Mathematics
Languages : en
Pages : 324
Book Description
Lotfi Zadeh introduced the notion of a fuzzy subset of a set in 1965. Ris seminal paper has opened up new insights and applications in a wide range of scientific fields. Azriel Rosenfeld used the notion of a fuzzy subset to put forth cornerstone papers in several areas of mathematics, among other discplines. Rosenfeld is the father of fuzzy abstract algebra. Kuroki is re sponsible for much of fuzzy ideal theory of semigroups. Others who worked on fuzzy semigroup theory, such as Xie, are mentioned in the bibliogra phy. The purpose of this book is to present an up to date account of fuzzy subsemigroups and fuzzy ideals of a semigroup. We concentrate mainly on theoretical aspects, but we do include applications. The applications are in the areas of fuzzy coding theory, fuzzy finite state machines, and fuzzy languages. An extensive account of fuzzy automata and fuzzy languages is given in [100]. Consequently, we only consider results in these areas that have not appeared in [100] and that pertain to semigroups. In Chapter 1, we review some basic results on fuzzy subsets, semigroups, codes, finite state machines, and languages. The purpose of this chapter is to present basic results that are needed in the remainder of the book. In Chapter 2, we introduce certain fuzzy ideals of a semigroup, namely, fuzzy two-sided ideals, fuzzy bi-ideals, fuzzy interior ideals, fuzzy quasi ideals, and fuzzy generalized bi-ideals.
Publisher: Springer
ISBN: 3540371257
Category : Mathematics
Languages : en
Pages : 324
Book Description
Lotfi Zadeh introduced the notion of a fuzzy subset of a set in 1965. Ris seminal paper has opened up new insights and applications in a wide range of scientific fields. Azriel Rosenfeld used the notion of a fuzzy subset to put forth cornerstone papers in several areas of mathematics, among other discplines. Rosenfeld is the father of fuzzy abstract algebra. Kuroki is re sponsible for much of fuzzy ideal theory of semigroups. Others who worked on fuzzy semigroup theory, such as Xie, are mentioned in the bibliogra phy. The purpose of this book is to present an up to date account of fuzzy subsemigroups and fuzzy ideals of a semigroup. We concentrate mainly on theoretical aspects, but we do include applications. The applications are in the areas of fuzzy coding theory, fuzzy finite state machines, and fuzzy languages. An extensive account of fuzzy automata and fuzzy languages is given in [100]. Consequently, we only consider results in these areas that have not appeared in [100] and that pertain to semigroups. In Chapter 1, we review some basic results on fuzzy subsets, semigroups, codes, finite state machines, and languages. The purpose of this chapter is to present basic results that are needed in the remainder of the book. In Chapter 2, we introduce certain fuzzy ideals of a semigroup, namely, fuzzy two-sided ideals, fuzzy bi-ideals, fuzzy interior ideals, fuzzy quasi ideals, and fuzzy generalized bi-ideals.
Characterizations of Group Theory under Q-Neutrosophic Soft Environment
Author: Majdoleen Abu Qamar
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 17
Book Description
Neutrosophic set theory was initiated as a method to handle indeterminate uncertain data. It is identified via three independent memberships represent truth T, indeterminate I and falsity F membership degrees of an element. As a generalization of neutrosophic set theory, Q-neutrosophic set theory was established as a new hybrid model that keeps the features of Q-fuzzy soft sets which handle two-dimensional information and the features of neutrosophic soft sets in dealing with uncertainty. Different extensions of fuzzy sets have been already implemented to several algebraic structures, such as groups, symmetric groups, rings and lie algebras. Group theory is one of the most essential algebraic structures in the field of algebra. The inspiration of the current work is to broaden the idea of Q-neutrosophic soft set to group theory. In this paper the concept of Q-neutrosophic soft groups is presented. Numerous properties and basic attributes are examined. We characterize the thought of Q-level soft sets of a Q-neutrosophic soft set, which is a bridge between Q-neutrosophic soft groups and soft groups. The concept of Q-neutrosophic soft homomorphism is defined and homomorphic image and preimage of a Q-neutrosophic soft groups are investigated. Furthermore, the cartesian product of Q-neutrosophic soft groups is proposed and some relevant properties are explored.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 17
Book Description
Neutrosophic set theory was initiated as a method to handle indeterminate uncertain data. It is identified via three independent memberships represent truth T, indeterminate I and falsity F membership degrees of an element. As a generalization of neutrosophic set theory, Q-neutrosophic set theory was established as a new hybrid model that keeps the features of Q-fuzzy soft sets which handle two-dimensional information and the features of neutrosophic soft sets in dealing with uncertainty. Different extensions of fuzzy sets have been already implemented to several algebraic structures, such as groups, symmetric groups, rings and lie algebras. Group theory is one of the most essential algebraic structures in the field of algebra. The inspiration of the current work is to broaden the idea of Q-neutrosophic soft set to group theory. In this paper the concept of Q-neutrosophic soft groups is presented. Numerous properties and basic attributes are examined. We characterize the thought of Q-level soft sets of a Q-neutrosophic soft set, which is a bridge between Q-neutrosophic soft groups and soft groups. The concept of Q-neutrosophic soft homomorphism is defined and homomorphic image and preimage of a Q-neutrosophic soft groups are investigated. Furthermore, the cartesian product of Q-neutrosophic soft groups is proposed and some relevant properties are explored.
Fuzzy Group Theory
Author: John N. Mordeson
Publisher: Springer
ISBN: 9783642064128
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
This book presents an up-to-date account of research in important topics of fuzzy group theory. It concentrates on the theoretical aspects of fuzzy subgroups of a group. It includes applications to abstract recognition problems and to coding theory. The book begins with basic properties of fuzzy subgroups. Fuzzy subgroups of Hamiltonian, solvable, P-Hall, and nilpotent groups are discussed. Construction of free fuzzy subgroups is determined. Numerical invariants of fuzzy subgroups of Abelian groups are developed. The problem in group theory of obtaining conditions under which a group can be expressed as a direct product of its normal subgroups is considered. Methods for deriving fuzzy theorems from crisp ones are presented and the embedding of lattices of fuzzy subgroups into lattices of crisp groups is discussed as well as deriving membership functions from similarity relations. The material presented makes this book a good reference for graduate students and researchers working in fuzzy group theory.
Publisher: Springer
ISBN: 9783642064128
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
This book presents an up-to-date account of research in important topics of fuzzy group theory. It concentrates on the theoretical aspects of fuzzy subgroups of a group. It includes applications to abstract recognition problems and to coding theory. The book begins with basic properties of fuzzy subgroups. Fuzzy subgroups of Hamiltonian, solvable, P-Hall, and nilpotent groups are discussed. Construction of free fuzzy subgroups is determined. Numerical invariants of fuzzy subgroups of Abelian groups are developed. The problem in group theory of obtaining conditions under which a group can be expressed as a direct product of its normal subgroups is considered. Methods for deriving fuzzy theorems from crisp ones are presented and the embedding of lattices of fuzzy subgroups into lattices of crisp groups is discussed as well as deriving membership functions from similarity relations. The material presented makes this book a good reference for graduate students and researchers working in fuzzy group theory.
Handbook of Research on Emerging Applications of Fuzzy Algebraic Structures
Author: Jana, Chiranjibe
Publisher: IGI Global
ISBN: 1799801926
Category : Mathematics
Languages : en
Pages : 439
Book Description
In the world of mathematics, the study of fuzzy relations and its theories are well-documented and a staple in the area of calculative methods. What many researchers and scientists overlook is how fuzzy theory can be applied to industries outside of arithmetic. The framework of fuzzy logic is much broader than professionals realize. There is a lack of research on the full potential this theoretical model can reach. The Handbook of Research on Emerging Applications of Fuzzy Algebraic Structures provides emerging research exploring the theoretical and practical aspects of fuzzy set theory and its real-life applications within the fields of engineering and science. Featuring coverage on a broad range of topics such as complex systems, topological spaces, and linear transformations, this book is ideally designed for academicians, professionals, and students seeking current research on innovations in fuzzy logic in algebra and other matrices.
Publisher: IGI Global
ISBN: 1799801926
Category : Mathematics
Languages : en
Pages : 439
Book Description
In the world of mathematics, the study of fuzzy relations and its theories are well-documented and a staple in the area of calculative methods. What many researchers and scientists overlook is how fuzzy theory can be applied to industries outside of arithmetic. The framework of fuzzy logic is much broader than professionals realize. There is a lack of research on the full potential this theoretical model can reach. The Handbook of Research on Emerging Applications of Fuzzy Algebraic Structures provides emerging research exploring the theoretical and practical aspects of fuzzy set theory and its real-life applications within the fields of engineering and science. Featuring coverage on a broad range of topics such as complex systems, topological spaces, and linear transformations, this book is ideally designed for academicians, professionals, and students seeking current research on innovations in fuzzy logic in algebra and other matrices.
Elementary Fuzzy Matrix Theory and Fuzzy Models for Social Scientists
Author: W. B. Vasantha Kandasamy, Florentin Smarandache, K. Ilanthenral
Publisher: Infinite Study
ISBN: 1599730057
Category : Mathematics
Languages : en
Pages : 352
Book Description
Publisher: Infinite Study
ISBN: 1599730057
Category : Mathematics
Languages : en
Pages : 352
Book Description
Smarandache Fuzzy Algebra
Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 1931233748
Category : Mathematics
Languages : en
Pages : 455
Book Description
The author studies the Smarandache Fuzzy Algebra, which, like its predecessor Fuzzy Algebra, arose from the need to define structures that were more compatible with the real world where the grey areas mattered, not only black or white.In any human field, a Smarandache n-structure on a set S means a weak structure {w(0)} on S such that there exists a chain of proper subsets P(n-1) in P(n-2) in?in P(2) in P(1) in S whose corresponding structures verify the chain {w(n-1)} includes {w(n-2)} includes? includes {w(2)} includes {w(1)} includes {w(0)}, where 'includes' signifies 'strictly stronger' (i.e., structure satisfying more axioms).This book is referring to a Smarandache 2-algebraic structure (two levels only of structures in algebra) on a set S, i.e. a weak structure {w(0)} on S such that there exists a proper subset P of S, which is embedded with a stronger structure {w(1)}. Properties of Smarandache fuzzy semigroups, groupoids, loops, bigroupoids, biloops, non-associative rings, birings, vector spaces, semirings, semivector spaces, non-associative semirings, bisemirings, near-rings, non-associative near-ring, and binear-rings are presented in the second part of this book together with examples, solved and unsolved problems, and theorems. Also, applications of Smarandache groupoids, near-rings, and semirings in automaton theory, in error correcting codes, and in the construction of S-sub-biautomaton can be found in the last chapter.
Publisher: Infinite Study
ISBN: 1931233748
Category : Mathematics
Languages : en
Pages : 455
Book Description
The author studies the Smarandache Fuzzy Algebra, which, like its predecessor Fuzzy Algebra, arose from the need to define structures that were more compatible with the real world where the grey areas mattered, not only black or white.In any human field, a Smarandache n-structure on a set S means a weak structure {w(0)} on S such that there exists a chain of proper subsets P(n-1) in P(n-2) in?in P(2) in P(1) in S whose corresponding structures verify the chain {w(n-1)} includes {w(n-2)} includes? includes {w(2)} includes {w(1)} includes {w(0)}, where 'includes' signifies 'strictly stronger' (i.e., structure satisfying more axioms).This book is referring to a Smarandache 2-algebraic structure (two levels only of structures in algebra) on a set S, i.e. a weak structure {w(0)} on S such that there exists a proper subset P of S, which is embedded with a stronger structure {w(1)}. Properties of Smarandache fuzzy semigroups, groupoids, loops, bigroupoids, biloops, non-associative rings, birings, vector spaces, semirings, semivector spaces, non-associative semirings, bisemirings, near-rings, non-associative near-ring, and binear-rings are presented in the second part of this book together with examples, solved and unsolved problems, and theorems. Also, applications of Smarandache groupoids, near-rings, and semirings in automaton theory, in error correcting codes, and in the construction of S-sub-biautomaton can be found in the last chapter.
Lectures on Fuzzy and Fuzzy SUSY Physics
Author: A. P. Balachandran
Publisher: World Scientific
ISBN: 9812707468
Category : Science
Languages : en
Pages : 196
Book Description
Noncommutative geometry provides a powerful tool for regularizing quantum field theories in the form of fuzzy physics. Fuzzy physics maintains symmetries, has no fermion-doubling problem and represents topological features efficiently. These lecture notes provide a comprehensive introduction to the field. Starting with the construction of fuzzy spaces, using the concrete examples of the fuzzy sphere and fuzzy complex projective spaces, the book moves on to discuss the technology of star products on noncommutative R2d and on the fuzzy sphere. Scalar, spinor and gauge field theories as well as extended objects such as monopoles and nonlinear sigma modes are treated in considerable detail. A detailed treatment of the regularization of supersymmetry is given using the techniques of fuzzy physics.
Publisher: World Scientific
ISBN: 9812707468
Category : Science
Languages : en
Pages : 196
Book Description
Noncommutative geometry provides a powerful tool for regularizing quantum field theories in the form of fuzzy physics. Fuzzy physics maintains symmetries, has no fermion-doubling problem and represents topological features efficiently. These lecture notes provide a comprehensive introduction to the field. Starting with the construction of fuzzy spaces, using the concrete examples of the fuzzy sphere and fuzzy complex projective spaces, the book moves on to discuss the technology of star products on noncommutative R2d and on the fuzzy sphere. Scalar, spinor and gauge field theories as well as extended objects such as monopoles and nonlinear sigma modes are treated in considerable detail. A detailed treatment of the regularization of supersymmetry is given using the techniques of fuzzy physics.
Intuitionistic Fuzzy Sets
Author: Krassimir T. Atanassov
Publisher: Physica
ISBN: 3790818704
Category : Mathematics
Languages : en
Pages : 336
Book Description
In the beginning of 1983, I came across A. Kaufmann's book "Introduction to the theory of fuzzy sets" (Academic Press, New York, 1975). This was my first acquaintance with the fuzzy set theory. Then I tried to introduce a new component (which determines the degree of non-membership) in the definition of these sets and to study the properties of the new objects so defined. I defined ordinary operations as "n", "U", "+" and "." over the new sets, but I had began to look more seriously at them since April 1983, when I defined operators analogous to the modal operators of "necessity" and "possibility". The late George Gargov (7 April 1947 - 9 November 1996) is the "god father" of the sets I introduced - in fact, he has invented the name "intu itionistic fuzzy", motivated by the fact that the law of the excluded middle does not hold for them. Presently, intuitionistic fuzzy sets are an object of intensive research by scholars and scientists from over ten countries. This book is the first attempt for a more comprehensive and complete report on the intuitionistic fuzzy set theory and its more relevant applications in a variety of diverse fields. In this sense, it has also a referential character.
Publisher: Physica
ISBN: 3790818704
Category : Mathematics
Languages : en
Pages : 336
Book Description
In the beginning of 1983, I came across A. Kaufmann's book "Introduction to the theory of fuzzy sets" (Academic Press, New York, 1975). This was my first acquaintance with the fuzzy set theory. Then I tried to introduce a new component (which determines the degree of non-membership) in the definition of these sets and to study the properties of the new objects so defined. I defined ordinary operations as "n", "U", "+" and "." over the new sets, but I had began to look more seriously at them since April 1983, when I defined operators analogous to the modal operators of "necessity" and "possibility". The late George Gargov (7 April 1947 - 9 November 1996) is the "god father" of the sets I introduced - in fact, he has invented the name "intu itionistic fuzzy", motivated by the fact that the law of the excluded middle does not hold for them. Presently, intuitionistic fuzzy sets are an object of intensive research by scholars and scientists from over ten countries. This book is the first attempt for a more comprehensive and complete report on the intuitionistic fuzzy set theory and its more relevant applications in a variety of diverse fields. In this sense, it has also a referential character.
A First Course in Group Theory
Author: Bijan Davvaz
Publisher: Springer Nature
ISBN: 9811663653
Category : Mathematics
Languages : en
Pages : 300
Book Description
This textbook provides a readable account of the examples and fundamental results of groups from a theoretical and geometrical point of view. Topics on important examples of groups (like cyclic groups, permutation groups, group of arithmetical functions, matrix groups and linear groups), Lagrange’s theorem, normal subgroups, factor groups, derived subgroup, homomorphism, isomorphism and automorphism of groups have been discussed in depth. Covering all major topics, this book is targeted to undergraduate students of mathematics with no prerequisite knowledge of the discussed topics. Each section ends with a set of worked-out problems and supplementary exercises to challenge the knowledge and ability of the reader.
Publisher: Springer Nature
ISBN: 9811663653
Category : Mathematics
Languages : en
Pages : 300
Book Description
This textbook provides a readable account of the examples and fundamental results of groups from a theoretical and geometrical point of view. Topics on important examples of groups (like cyclic groups, permutation groups, group of arithmetical functions, matrix groups and linear groups), Lagrange’s theorem, normal subgroups, factor groups, derived subgroup, homomorphism, isomorphism and automorphism of groups have been discussed in depth. Covering all major topics, this book is targeted to undergraduate students of mathematics with no prerequisite knowledge of the discussed topics. Each section ends with a set of worked-out problems and supplementary exercises to challenge the knowledge and ability of the reader.