Author: Mika Sato
Publisher: Physica
ISBN:
Category : Business & Economics
Languages : en
Pages : 140
Book Description
This book presents our most recent research on fuzzy clustering models and applications. These models represent new methods in the field of cluster analysis which are based on common properties between objects to be clustered. We present asymmetric aggregation operators as a new concept for representing asymmetric relationship between objects. Asymmetric aggregation operators are proposed in order to obtain clusters in which objects are not only similar to each other but are also asymetrically related. Implementation of clustering model by using neural networks is also presented. A number of examples are presented to demonstrate the proposed new techniques. This book will prove useful to the researchers, scientists, engineers and postgraduate students in all the areas including science, engineering and business.
Fuzzy Clustering Models and Applications
Author: Mika Sato
Publisher: Physica
ISBN:
Category : Business & Economics
Languages : en
Pages : 140
Book Description
This book presents our most recent research on fuzzy clustering models and applications. These models represent new methods in the field of cluster analysis which are based on common properties between objects to be clustered. We present asymmetric aggregation operators as a new concept for representing asymmetric relationship between objects. Asymmetric aggregation operators are proposed in order to obtain clusters in which objects are not only similar to each other but are also asymetrically related. Implementation of clustering model by using neural networks is also presented. A number of examples are presented to demonstrate the proposed new techniques. This book will prove useful to the researchers, scientists, engineers and postgraduate students in all the areas including science, engineering and business.
Publisher: Physica
ISBN:
Category : Business & Economics
Languages : en
Pages : 140
Book Description
This book presents our most recent research on fuzzy clustering models and applications. These models represent new methods in the field of cluster analysis which are based on common properties between objects to be clustered. We present asymmetric aggregation operators as a new concept for representing asymmetric relationship between objects. Asymmetric aggregation operators are proposed in order to obtain clusters in which objects are not only similar to each other but are also asymetrically related. Implementation of clustering model by using neural networks is also presented. A number of examples are presented to demonstrate the proposed new techniques. This book will prove useful to the researchers, scientists, engineers and postgraduate students in all the areas including science, engineering and business.
Algorithms for Fuzzy Clustering
Author: Sadaaki Miyamoto
Publisher: Springer Science & Business Media
ISBN: 3540787364
Category : Computers
Languages : en
Pages : 252
Book Description
Recently many researchers are working on cluster analysis as a main tool for exploratory data analysis and data mining. A notable feature is that specialists in di?erent ?elds of sciences are considering the tool of data clustering to be useful. A major reason is that clustering algorithms and software are ?exible in thesensethatdi?erentmathematicalframeworksareemployedinthealgorithms and a user can select a suitable method according to his application. Moreover clusteringalgorithmshavedi?erentoutputsrangingfromtheolddendrogramsof agglomerativeclustering to more recent self-organizingmaps. Thus, a researcher or user can choose an appropriate output suited to his purpose,which is another ?exibility of the methods of clustering. An old and still most popular method is the K-means which use K cluster centers. A group of data is gathered around a cluster center and thus forms a cluster. The main subject of this book is the fuzzy c-means proposed by Dunn and Bezdek and their variations including recent studies. A main reasonwhy we concentrate on fuzzy c-means is that most methodology and application studies infuzzy clusteringusefuzzy c-means,andfuzzy c-meansshouldbe consideredto beamajortechniqueofclusteringingeneral,regardlesswhetheroneisinterested in fuzzy methods or not. Moreover recent advances in clustering techniques are rapid and we requirea new textbook that includes recent algorithms.We should also note that several books have recently been published but the contents do not include some methods studied herein.
Publisher: Springer Science & Business Media
ISBN: 3540787364
Category : Computers
Languages : en
Pages : 252
Book Description
Recently many researchers are working on cluster analysis as a main tool for exploratory data analysis and data mining. A notable feature is that specialists in di?erent ?elds of sciences are considering the tool of data clustering to be useful. A major reason is that clustering algorithms and software are ?exible in thesensethatdi?erentmathematicalframeworksareemployedinthealgorithms and a user can select a suitable method according to his application. Moreover clusteringalgorithmshavedi?erentoutputsrangingfromtheolddendrogramsof agglomerativeclustering to more recent self-organizingmaps. Thus, a researcher or user can choose an appropriate output suited to his purpose,which is another ?exibility of the methods of clustering. An old and still most popular method is the K-means which use K cluster centers. A group of data is gathered around a cluster center and thus forms a cluster. The main subject of this book is the fuzzy c-means proposed by Dunn and Bezdek and their variations including recent studies. A main reasonwhy we concentrate on fuzzy c-means is that most methodology and application studies infuzzy clusteringusefuzzy c-means,andfuzzy c-meansshouldbe consideredto beamajortechniqueofclusteringingeneral,regardlesswhetheroneisinterested in fuzzy methods or not. Moreover recent advances in clustering techniques are rapid and we requirea new textbook that includes recent algorithms.We should also note that several books have recently been published but the contents do not include some methods studied herein.
Advances in Fuzzy Clustering and its Applications
Author: Jose Valente de Oliveira
Publisher: John Wiley & Sons
ISBN: 9780470061183
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
A comprehensive, coherent, and in depth presentation of the state of the art in fuzzy clustering. Fuzzy clustering is now a mature and vibrant area of research with highly innovative advanced applications. Encapsulating this through presenting a careful selection of research contributions, this book addresses timely and relevant concepts and methods, whilst identifying major challenges and recent developments in the area. Split into five clear sections, Fundamentals, Visualization, Algorithms and Computational Aspects, Real-Time and Dynamic Clustering, and Applications and Case Studies, the book covers a wealth of novel, original and fully updated material, and in particular offers: a focus on the algorithmic and computational augmentations of fuzzy clustering and its effectiveness in handling high dimensional problems, distributed problem solving and uncertainty management. presentations of the important and relevant phases of cluster design, including the role of information granules, fuzzy sets in the realization of human-centricity facet of data analysis, as well as system modelling demonstrations of how the results facilitate further detailed development of models, and enhance interpretation aspects a carefully organized illustrative series of applications and case studies in which fuzzy clustering plays a pivotal role This book will be of key interest to engineers associated with fuzzy control, bioinformatics, data mining, image processing, and pattern recognition, while computer engineers, students and researchers, in most engineering disciplines, will find this an invaluable resource and research tool.
Publisher: John Wiley & Sons
ISBN: 9780470061183
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
A comprehensive, coherent, and in depth presentation of the state of the art in fuzzy clustering. Fuzzy clustering is now a mature and vibrant area of research with highly innovative advanced applications. Encapsulating this through presenting a careful selection of research contributions, this book addresses timely and relevant concepts and methods, whilst identifying major challenges and recent developments in the area. Split into five clear sections, Fundamentals, Visualization, Algorithms and Computational Aspects, Real-Time and Dynamic Clustering, and Applications and Case Studies, the book covers a wealth of novel, original and fully updated material, and in particular offers: a focus on the algorithmic and computational augmentations of fuzzy clustering and its effectiveness in handling high dimensional problems, distributed problem solving and uncertainty management. presentations of the important and relevant phases of cluster design, including the role of information granules, fuzzy sets in the realization of human-centricity facet of data analysis, as well as system modelling demonstrations of how the results facilitate further detailed development of models, and enhance interpretation aspects a carefully organized illustrative series of applications and case studies in which fuzzy clustering plays a pivotal role This book will be of key interest to engineers associated with fuzzy control, bioinformatics, data mining, image processing, and pattern recognition, while computer engineers, students and researchers, in most engineering disciplines, will find this an invaluable resource and research tool.
Data Clustering: Theory, Algorithms, and Applications, Second Edition
Author: Guojun Gan
Publisher: SIAM
ISBN: 1611976332
Category : Mathematics
Languages : en
Pages : 430
Book Description
Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments, covers the basics of data clustering, includes a list of popular clustering algorithms, and provides program code that helps users implement clustering algorithms. Data Clustering: Theory, Algorithms and Applications, Second Edition will be of interest to researchers, practitioners, and data scientists as well as undergraduate and graduate students.
Publisher: SIAM
ISBN: 1611976332
Category : Mathematics
Languages : en
Pages : 430
Book Description
Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments, covers the basics of data clustering, includes a list of popular clustering algorithms, and provides program code that helps users implement clustering algorithms. Data Clustering: Theory, Algorithms and Applications, Second Edition will be of interest to researchers, practitioners, and data scientists as well as undergraduate and graduate students.
Fuzzy Sets & their Application to Clustering & Training
Author: Beatrice Lazzerini
Publisher: CRC Press
ISBN: 9780849305894
Category : Computers
Languages : en
Pages : 672
Book Description
Fuzzy set theory - and its underlying fuzzy logic - represents one of the most significant scientific and cultural paradigms to emerge in the last half-century. Its theoretical and technological promise is vast, and we are only beginning to experience its potential. Clustering is the first and most basic application of fuzzy set theory, but forms the basis of many, more sophisticated, intelligent computational models, particularly in pattern recognition, data mining, adaptive and hierarchical clustering, and classifier design. Fuzzy Sets and their Application to Clustering and Training offers a comprehensive introduction to fuzzy set theory, focusing on the concepts and results needed for training and clustering applications. It provides a unified mathematical framework for fuzzy classification and clustering, a methodology for developing training and classification methods, and a general method for obtaining a variety of fuzzy clustering algorithms. The authors - top experts from around the world - combine their talents to lay a solid foundation for applications of this powerful tool, from the basic concepts and mathematics through the study of various algorithms, to validity functionals and hierarchical clustering. The result is Fuzzy Sets and their Application to Clustering and Training - an outstanding initiation into the world of fuzzy learning classifiers and fuzzy clustering.
Publisher: CRC Press
ISBN: 9780849305894
Category : Computers
Languages : en
Pages : 672
Book Description
Fuzzy set theory - and its underlying fuzzy logic - represents one of the most significant scientific and cultural paradigms to emerge in the last half-century. Its theoretical and technological promise is vast, and we are only beginning to experience its potential. Clustering is the first and most basic application of fuzzy set theory, but forms the basis of many, more sophisticated, intelligent computational models, particularly in pattern recognition, data mining, adaptive and hierarchical clustering, and classifier design. Fuzzy Sets and their Application to Clustering and Training offers a comprehensive introduction to fuzzy set theory, focusing on the concepts and results needed for training and clustering applications. It provides a unified mathematical framework for fuzzy classification and clustering, a methodology for developing training and classification methods, and a general method for obtaining a variety of fuzzy clustering algorithms. The authors - top experts from around the world - combine their talents to lay a solid foundation for applications of this powerful tool, from the basic concepts and mathematics through the study of various algorithms, to validity functionals and hierarchical clustering. The result is Fuzzy Sets and their Application to Clustering and Training - an outstanding initiation into the world of fuzzy learning classifiers and fuzzy clustering.
Fuzzy Clustering Models and Applications
Author: Mika Sato
Publisher:
ISBN: 9780790810263
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780790810263
Category :
Languages : en
Pages : 0
Book Description
Fuzzy Cluster Analysis
Author: Frank Höppner
Publisher: John Wiley & Sons
ISBN: 9780471988649
Category : Science
Languages : en
Pages : 308
Book Description
Dieser Band konzentriert sich auf Konzepte, Algorithmen und Anwendungen des Fuzzy Clustering. In sich geschlossen werden Techniken wie das Fuzzy-c-Mittel und die Gustafson-Kessel- und Gath- und Gava-Algorithmen behandelt, wobei vom Leser keine Vorkenntnisse auf dem Gebiet von Fuzzy-Systemen erwartet werden. Durch anschauliche Anwendungsbeispiele eignet sich das Buch als Einführung für Praktiker der Datenanalyse, der Bilderkennung und der angewandten Mathematik. (05/99)
Publisher: John Wiley & Sons
ISBN: 9780471988649
Category : Science
Languages : en
Pages : 308
Book Description
Dieser Band konzentriert sich auf Konzepte, Algorithmen und Anwendungen des Fuzzy Clustering. In sich geschlossen werden Techniken wie das Fuzzy-c-Mittel und die Gustafson-Kessel- und Gath- und Gava-Algorithmen behandelt, wobei vom Leser keine Vorkenntnisse auf dem Gebiet von Fuzzy-Systemen erwartet werden. Durch anschauliche Anwendungsbeispiele eignet sich das Buch als Einführung für Praktiker der Datenanalyse, der Bilderkennung und der angewandten Mathematik. (05/99)
Pattern Recognition with Fuzzy Objective Function Algorithms
Author: James C. Bezdek
Publisher: Springer Science & Business Media
ISBN: 147570450X
Category : Mathematics
Languages : en
Pages : 267
Book Description
The fuzzy set was conceived as a result of an attempt to come to grips with the problem of pattern recognition in the context of imprecisely defined categories. In such cases, the belonging of an object to a class is a matter of degree, as is the question of whether or not a group of objects form a cluster. A pioneering application of the theory of fuzzy sets to cluster analysis was made in 1969 by Ruspini. It was not until 1973, however, when the appearance of the work by Dunn and Bezdek on the Fuzzy ISODATA (or fuzzy c-means) algorithms became a landmark in the theory of cluster analysis, that the relevance of the theory of fuzzy sets to cluster analysis and pattern recognition became clearly established. Since then, the theory of fuzzy clustering has developed rapidly and fruitfully, with the author of the present monograph contributing a major share of what we know today. In their seminal work, Bezdek and Dunn have introduced the basic idea of determining the fuzzy clusters by minimizing an appropriately defined functional, and have derived iterative algorithms for computing the membership functions for the clusters in question. The important issue of convergence of such algorithms has become much better understood as a result of recent work which is described in the monograph.
Publisher: Springer Science & Business Media
ISBN: 147570450X
Category : Mathematics
Languages : en
Pages : 267
Book Description
The fuzzy set was conceived as a result of an attempt to come to grips with the problem of pattern recognition in the context of imprecisely defined categories. In such cases, the belonging of an object to a class is a matter of degree, as is the question of whether or not a group of objects form a cluster. A pioneering application of the theory of fuzzy sets to cluster analysis was made in 1969 by Ruspini. It was not until 1973, however, when the appearance of the work by Dunn and Bezdek on the Fuzzy ISODATA (or fuzzy c-means) algorithms became a landmark in the theory of cluster analysis, that the relevance of the theory of fuzzy sets to cluster analysis and pattern recognition became clearly established. Since then, the theory of fuzzy clustering has developed rapidly and fruitfully, with the author of the present monograph contributing a major share of what we know today. In their seminal work, Bezdek and Dunn have introduced the basic idea of determining the fuzzy clusters by minimizing an appropriately defined functional, and have derived iterative algorithms for computing the membership functions for the clusters in question. The important issue of convergence of such algorithms has become much better understood as a result of recent work which is described in the monograph.
Fuzzy Clustering Via Proportional Membership Model
Author: Susana Nascimento
Publisher: IOS Press
ISBN: 9781586034894
Category : Computers
Languages : en
Pages : 204
Book Description
Development of models with explicit mechanisms for data generation from cluster structures is of major interest in order to provide a theoretical framework for cluster structures found in data. Especially appealing in this regard are the so-called typological structures in which observed entities relate in various degrees to one or several prototypes. Such structures are relevant in many areas such as medicine or marketing, where any entity (patient/consumer) may adhere, with different degrees, to one or several prototypes (clinical scenario/consumer behavior), modelling a typological classification. In fuzzy clustering, the fuzzy c-means (FCM) method has become one of the most popular techniques. As a fuzzy analogue of c-means crisp clustering, FCM models a typological classification, much the same way as c-means. However, FCM does not adhere to the statistical paradigm at which the data are considered generated by a cluster structure, while crisp c-means does. The present work proposes a framework for typological classification based on a fuzzy clustering model of data generation.
Publisher: IOS Press
ISBN: 9781586034894
Category : Computers
Languages : en
Pages : 204
Book Description
Development of models with explicit mechanisms for data generation from cluster structures is of major interest in order to provide a theoretical framework for cluster structures found in data. Especially appealing in this regard are the so-called typological structures in which observed entities relate in various degrees to one or several prototypes. Such structures are relevant in many areas such as medicine or marketing, where any entity (patient/consumer) may adhere, with different degrees, to one or several prototypes (clinical scenario/consumer behavior), modelling a typological classification. In fuzzy clustering, the fuzzy c-means (FCM) method has become one of the most popular techniques. As a fuzzy analogue of c-means crisp clustering, FCM models a typological classification, much the same way as c-means. However, FCM does not adhere to the statistical paradigm at which the data are considered generated by a cluster structure, while crisp c-means does. The present work proposes a framework for typological classification based on a fuzzy clustering model of data generation.
Fuzzy Models and Algorithms for Pattern Recognition and Image Processing
Author: James C. Bezdek
Publisher: Springer Science & Business Media
ISBN: 0387245790
Category : Computers
Languages : en
Pages : 786
Book Description
Fuzzy Models and Algorithms for Pattern Recognition and Image Processing presents a comprehensive introduction of the use of fuzzy models in pattern recognition and selected topics in image processing and computer vision. Unique to this volume in the Kluwer Handbooks of Fuzzy Sets Series is the fact that this book was written in its entirety by its four authors. A single notation, presentation style, and purpose are used throughout. The result is an extensive unified treatment of many fuzzy models for pattern recognition. The main topics are clustering and classifier design, with extensive material on feature analysis relational clustering, image processing and computer vision. Also included are numerous figures, images and numerical examples that illustrate the use of various models involving applications in medicine, character and word recognition, remote sensing, military image analysis, and industrial engineering.
Publisher: Springer Science & Business Media
ISBN: 0387245790
Category : Computers
Languages : en
Pages : 786
Book Description
Fuzzy Models and Algorithms for Pattern Recognition and Image Processing presents a comprehensive introduction of the use of fuzzy models in pattern recognition and selected topics in image processing and computer vision. Unique to this volume in the Kluwer Handbooks of Fuzzy Sets Series is the fact that this book was written in its entirety by its four authors. A single notation, presentation style, and purpose are used throughout. The result is an extensive unified treatment of many fuzzy models for pattern recognition. The main topics are clustering and classifier design, with extensive material on feature analysis relational clustering, image processing and computer vision. Also included are numerous figures, images and numerical examples that illustrate the use of various models involving applications in medicine, character and word recognition, remote sensing, military image analysis, and industrial engineering.