Author: Toshinori Munakata
Publisher: Springer Science & Business Media
ISBN: 1846288398
Category : Computers
Languages : en
Pages : 266
Book Description
The book covers the most essential and widely employed material in each area, particularly the material important for real-world applications. Our goal is not to cover every latest progress in the fields, nor to discuss every detail of various techniques that have been developed. New sections/subsections added in this edition are: Simulated Annealing (Section 3.7), Boltzmann Machines (Section 3.8) and Extended Fuzzy if-then Rules Tables (Sub-section 5.5.3). Also, numerous changes and typographical corrections have been made throughout the manuscript. The Preface to the first edition follows. General scope of the book Artificial intelligence (AI) as a field has undergone rapid growth in diversification and practicality. For the past few decades, the repertoire of AI techniques has evolved and expanded. Scores of newer fields have been added to the traditional symbolic AI. Symbolic AI covers areas such as knowledge-based systems, logical reasoning, symbolic machine learning, search techniques, and natural language processing. The newer fields include neural networks, genetic algorithms or evolutionary computing, fuzzy systems, rough set theory, and chaotic systems.
Fundamentals of the New Artificial Intelligence
Author: Toshinori Munakata
Publisher: Springer Science & Business Media
ISBN: 1846288398
Category : Computers
Languages : en
Pages : 266
Book Description
The book covers the most essential and widely employed material in each area, particularly the material important for real-world applications. Our goal is not to cover every latest progress in the fields, nor to discuss every detail of various techniques that have been developed. New sections/subsections added in this edition are: Simulated Annealing (Section 3.7), Boltzmann Machines (Section 3.8) and Extended Fuzzy if-then Rules Tables (Sub-section 5.5.3). Also, numerous changes and typographical corrections have been made throughout the manuscript. The Preface to the first edition follows. General scope of the book Artificial intelligence (AI) as a field has undergone rapid growth in diversification and practicality. For the past few decades, the repertoire of AI techniques has evolved and expanded. Scores of newer fields have been added to the traditional symbolic AI. Symbolic AI covers areas such as knowledge-based systems, logical reasoning, symbolic machine learning, search techniques, and natural language processing. The newer fields include neural networks, genetic algorithms or evolutionary computing, fuzzy systems, rough set theory, and chaotic systems.
Publisher: Springer Science & Business Media
ISBN: 1846288398
Category : Computers
Languages : en
Pages : 266
Book Description
The book covers the most essential and widely employed material in each area, particularly the material important for real-world applications. Our goal is not to cover every latest progress in the fields, nor to discuss every detail of various techniques that have been developed. New sections/subsections added in this edition are: Simulated Annealing (Section 3.7), Boltzmann Machines (Section 3.8) and Extended Fuzzy if-then Rules Tables (Sub-section 5.5.3). Also, numerous changes and typographical corrections have been made throughout the manuscript. The Preface to the first edition follows. General scope of the book Artificial intelligence (AI) as a field has undergone rapid growth in diversification and practicality. For the past few decades, the repertoire of AI techniques has evolved and expanded. Scores of newer fields have been added to the traditional symbolic AI. Symbolic AI covers areas such as knowledge-based systems, logical reasoning, symbolic machine learning, search techniques, and natural language processing. The newer fields include neural networks, genetic algorithms or evolutionary computing, fuzzy systems, rough set theory, and chaotic systems.
Fundamentals of Artificial Intelligence
Author: K.R. Chowdhary
Publisher: Springer Nature
ISBN: 8132239725
Category : Computers
Languages : en
Pages : 730
Book Description
Fundamentals of Artificial Intelligence introduces the foundations of present day AI and provides coverage to recent developments in AI such as Constraint Satisfaction Problems, Adversarial Search and Game Theory, Statistical Learning Theory, Automated Planning, Intelligent Agents, Information Retrieval, Natural Language & Speech Processing, and Machine Vision. The book features a wealth of examples and illustrations, and practical approaches along with the theoretical concepts. It covers all major areas of AI in the domain of recent developments. The book is intended primarily for students who major in computer science at undergraduate and graduate level but will also be of interest as a foundation to researchers in the area of AI.
Publisher: Springer Nature
ISBN: 8132239725
Category : Computers
Languages : en
Pages : 730
Book Description
Fundamentals of Artificial Intelligence introduces the foundations of present day AI and provides coverage to recent developments in AI such as Constraint Satisfaction Problems, Adversarial Search and Game Theory, Statistical Learning Theory, Automated Planning, Intelligent Agents, Information Retrieval, Natural Language & Speech Processing, and Machine Vision. The book features a wealth of examples and illustrations, and practical approaches along with the theoretical concepts. It covers all major areas of AI in the domain of recent developments. The book is intended primarily for students who major in computer science at undergraduate and graduate level but will also be of interest as a foundation to researchers in the area of AI.
Artificial Intelligence and Machine Learning Fundamentals
Author: Zsolt Nagy
Publisher: Packt Publishing Ltd
ISBN: 1789809207
Category : Computers
Languages : en
Pages : 330
Book Description
Create AI applications in Python and lay the foundations for your career in data science Key FeaturesPractical examples that explain key machine learning algorithmsExplore neural networks in detail with interesting examplesMaster core AI concepts with engaging activitiesBook Description Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Python and discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples. As you make your way through the book, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore's law. By the end of this book, you will be confident when it comes to building your own AI applications with your newly acquired skills! What you will learnUnderstand the importance, principles, and fields of AIImplement basic artificial intelligence concepts with PythonApply regression and classification concepts to real-world problemsPerform predictive analysis using decision trees and random forestsCarry out clustering using the k-means and mean shift algorithmsUnderstand the fundamentals of deep learning via practical examplesWho this book is for Artificial Intelligence and Machine Learning Fundamentals is for software developers and data scientists who want to enrich their projects with machine learning. You do not need any prior experience in AI. However, it’s recommended that you have knowledge of high school-level mathematics and at least one programming language (preferably Python).
Publisher: Packt Publishing Ltd
ISBN: 1789809207
Category : Computers
Languages : en
Pages : 330
Book Description
Create AI applications in Python and lay the foundations for your career in data science Key FeaturesPractical examples that explain key machine learning algorithmsExplore neural networks in detail with interesting examplesMaster core AI concepts with engaging activitiesBook Description Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Python and discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples. As you make your way through the book, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore's law. By the end of this book, you will be confident when it comes to building your own AI applications with your newly acquired skills! What you will learnUnderstand the importance, principles, and fields of AIImplement basic artificial intelligence concepts with PythonApply regression and classification concepts to real-world problemsPerform predictive analysis using decision trees and random forestsCarry out clustering using the k-means and mean shift algorithmsUnderstand the fundamentals of deep learning via practical examplesWho this book is for Artificial Intelligence and Machine Learning Fundamentals is for software developers and data scientists who want to enrich their projects with machine learning. You do not need any prior experience in AI. However, it’s recommended that you have knowledge of high school-level mathematics and at least one programming language (preferably Python).
Artificial Intelligence
Author: Cherry Bhargava
Publisher: CRC Press
ISBN: 1000406466
Category : Technology & Engineering
Languages : en
Pages : 271
Book Description
This comprehensive reference text discusses the fundamental concepts of artificial intelligence and its applications in a single volume. Artificial Intelligence: Fundamentals and Applications presents a detailed discussion of basic aspects and ethics in the field of artificial intelligence and its applications in areas, including electronic devices and systems, consumer electronics, automobile engineering, manufacturing, robotics and automation, agriculture, banking, and predictive analysis. Aimed at senior undergraduate and graduate students in the field of electrical engineering, electronics engineering, manufacturing engineering, pharmacy, and healthcare, this text: Discusses advances in artificial intelligence and its applications. Presents the predictive analysis and data analysis using artificial intelligence. Covers the algorithms and pseudo-codes for different domains. Discusses the latest development of artificial intelligence in the field of practical speech recognition, machine translation, autonomous vehicles, and household robotics. Covers the applications of artificial intelligence in fields, including pharmacy and healthcare, electronic devices and systems, manufacturing, consumer electronics, and robotics.
Publisher: CRC Press
ISBN: 1000406466
Category : Technology & Engineering
Languages : en
Pages : 271
Book Description
This comprehensive reference text discusses the fundamental concepts of artificial intelligence and its applications in a single volume. Artificial Intelligence: Fundamentals and Applications presents a detailed discussion of basic aspects and ethics in the field of artificial intelligence and its applications in areas, including electronic devices and systems, consumer electronics, automobile engineering, manufacturing, robotics and automation, agriculture, banking, and predictive analysis. Aimed at senior undergraduate and graduate students in the field of electrical engineering, electronics engineering, manufacturing engineering, pharmacy, and healthcare, this text: Discusses advances in artificial intelligence and its applications. Presents the predictive analysis and data analysis using artificial intelligence. Covers the algorithms and pseudo-codes for different domains. Discusses the latest development of artificial intelligence in the field of practical speech recognition, machine translation, autonomous vehicles, and household robotics. Covers the applications of artificial intelligence in fields, including pharmacy and healthcare, electronic devices and systems, manufacturing, consumer electronics, and robotics.
Fundamentals of Deep Learning
Author: Nikhil Buduma
Publisher: "O'Reilly Media, Inc."
ISBN: 1491925566
Category : Computers
Languages : en
Pages : 272
Book Description
With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning
Publisher: "O'Reilly Media, Inc."
ISBN: 1491925566
Category : Computers
Languages : en
Pages : 272
Book Description
With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning
Fundamentals of Machine Learning
Author: Thomas P. Trappenberg
Publisher:
ISBN: 0198828047
Category : Computers
Languages : en
Pages : 260
Book Description
Interest in machine learning is exploding across the world, both in research and for industrial applications. Fundamentals of Machine Learning provides a brief and accessible introduction to this rapidly growing field, one that will appeal to both students and researchers.
Publisher:
ISBN: 0198828047
Category : Computers
Languages : en
Pages : 260
Book Description
Interest in machine learning is exploding across the world, both in research and for industrial applications. Fundamentals of Machine Learning provides a brief and accessible introduction to this rapidly growing field, one that will appeal to both students and researchers.
Artificial Intelligence with Common Lisp
Author: James L. Noyes
Publisher: Jones & Bartlett Learning
ISBN: 9780669194739
Category : Computers
Languages : en
Pages : 644
Book Description
[The book] provides a balanced survey of the fundamentals of artificial intelligence, emphasizing the relationship between symbolic and numeric processing. The text is structured around an innovative, interactive combination of LISP programming and AI; it uses the constructs of the programming language to help readers understand the array of artificial intelligence concepts presented. After an overview of the field of artificial intelligence, the text presents the fundamentals of LISP, explaining the language's features in more detail than any other AI text. Common Lisp is then used consistently, in both programming exercises and plentiful examples of actual AI code.- Back cover This text is intended to provide an introduction to both AI and LISp for those having a background in computer science and mathematics. -Pref.
Publisher: Jones & Bartlett Learning
ISBN: 9780669194739
Category : Computers
Languages : en
Pages : 644
Book Description
[The book] provides a balanced survey of the fundamentals of artificial intelligence, emphasizing the relationship between symbolic and numeric processing. The text is structured around an innovative, interactive combination of LISP programming and AI; it uses the constructs of the programming language to help readers understand the array of artificial intelligence concepts presented. After an overview of the field of artificial intelligence, the text presents the fundamentals of LISP, explaining the language's features in more detail than any other AI text. Common Lisp is then used consistently, in both programming exercises and plentiful examples of actual AI code.- Back cover This text is intended to provide an introduction to both AI and LISp for those having a background in computer science and mathematics. -Pref.
Fundamentals of Machine Learning for Predictive Data Analytics, second edition
Author: John D. Kelleher
Publisher: MIT Press
ISBN: 0262361108
Category : Computers
Languages : en
Pages : 853
Book Description
The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.
Publisher: MIT Press
ISBN: 0262361108
Category : Computers
Languages : en
Pages : 853
Book Description
The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.
Artificial Intelligence
Author: Tim D. Washington
Publisher: Independently Published
ISBN: 9781798191729
Category : Computers
Languages : en
Pages : 48
Book Description
What is Artificial Intelligence? Artificial intelligence is a system that tends to simulate intelligent behaviors into computer-controlled machines or digital computers. Artificial Intelligence normally gives a machine the ability to carry out tasks usually associated with intelligent beings like us. Some of these tasks include translating languages, decision-making, visual perception, and speech recognition. In simple terms, artificial intelligence is the capability of any machine to mimic intelligent human behavior. Contrary to what many may think, Artificial intelligence is not a new field of study. In fact, it is older than most millennials reading this guide now. This may make you wonder when the concept of AI really started and from whence it came. As you will learn, machine learning is going to be a big deal in the world of technology. Those who would have started using it to unlock their data will greatly benefit from it even before people realize it exists. As a smart person, you should use this book to familiarize yourself with how machine learning works and then learn how to use it to your advantage. These days, AI is associated with the high-tech companies that dominate the field. Artificial intelligence first started as an academic discipline, but it has since sunken its tendrils into the business sector. Many AI researchers have abandoned academia altogether and flocked to companies like Facebook, Microsoft, Alphabet (Google) Amazon, openAI, and so on. The said companies are all working on different machine learning algorithms and are without a doubt at the forefront of AI research. Those with advanced degrees in AI, computer science, and maths rather join the engineering teams of these companies than stay in the academia. And since they are at the bleeding edge, it is worth listening to what their leaders have to say. Some have been quiet on the concerns about AI, and others like Amazon's Bezos have said that they aren't worried about potential AI threats. But, other visionaries like Bill Gates, Elon Musk, and physicist Stephen Hawking have all voiced their opinions on the potential dangers of Artificial Intelligence. In January 2015, Hawking, Musk, and several other AI experts signed an open letter on artificial intelligence research, calling for increased study on the potential effects on society. The twelve-page document is entitled "Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter". It calls for further research on new AI legislation, privacy, ethics research, and several other concerns. As described in the letter, the potential threats of artificial intelligence can fall into multiple dimensions. The good news is that the early stages of AI development that we find ourselves in are malleable. The future is ours to create, provided that proper time and care go into the non-engineering side of AI research and policy. Book Outline: Chapter 1 - Artificial Beings, a Brief History of the Human Psyche Chapter 2 - Top Six AI Myths Chapter 3 - Why AI is the New Business Degree Chapter 4 - Understanding Machine Learning Chapter 5 - Machine Learning Steps Chapter 6 - Robotics Chapter 7 - Natural Language Processing
Publisher: Independently Published
ISBN: 9781798191729
Category : Computers
Languages : en
Pages : 48
Book Description
What is Artificial Intelligence? Artificial intelligence is a system that tends to simulate intelligent behaviors into computer-controlled machines or digital computers. Artificial Intelligence normally gives a machine the ability to carry out tasks usually associated with intelligent beings like us. Some of these tasks include translating languages, decision-making, visual perception, and speech recognition. In simple terms, artificial intelligence is the capability of any machine to mimic intelligent human behavior. Contrary to what many may think, Artificial intelligence is not a new field of study. In fact, it is older than most millennials reading this guide now. This may make you wonder when the concept of AI really started and from whence it came. As you will learn, machine learning is going to be a big deal in the world of technology. Those who would have started using it to unlock their data will greatly benefit from it even before people realize it exists. As a smart person, you should use this book to familiarize yourself with how machine learning works and then learn how to use it to your advantage. These days, AI is associated with the high-tech companies that dominate the field. Artificial intelligence first started as an academic discipline, but it has since sunken its tendrils into the business sector. Many AI researchers have abandoned academia altogether and flocked to companies like Facebook, Microsoft, Alphabet (Google) Amazon, openAI, and so on. The said companies are all working on different machine learning algorithms and are without a doubt at the forefront of AI research. Those with advanced degrees in AI, computer science, and maths rather join the engineering teams of these companies than stay in the academia. And since they are at the bleeding edge, it is worth listening to what their leaders have to say. Some have been quiet on the concerns about AI, and others like Amazon's Bezos have said that they aren't worried about potential AI threats. But, other visionaries like Bill Gates, Elon Musk, and physicist Stephen Hawking have all voiced their opinions on the potential dangers of Artificial Intelligence. In January 2015, Hawking, Musk, and several other AI experts signed an open letter on artificial intelligence research, calling for increased study on the potential effects on society. The twelve-page document is entitled "Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter". It calls for further research on new AI legislation, privacy, ethics research, and several other concerns. As described in the letter, the potential threats of artificial intelligence can fall into multiple dimensions. The good news is that the early stages of AI development that we find ourselves in are malleable. The future is ours to create, provided that proper time and care go into the non-engineering side of AI research and policy. Book Outline: Chapter 1 - Artificial Beings, a Brief History of the Human Psyche Chapter 2 - Top Six AI Myths Chapter 3 - Why AI is the New Business Degree Chapter 4 - Understanding Machine Learning Chapter 5 - Machine Learning Steps Chapter 6 - Robotics Chapter 7 - Natural Language Processing
Fundamentals Of Robotics: Linking Perception To Action
Author: Ming Xie
Publisher: World Scientific Publishing Company
ISBN: 9813102349
Category : Technology & Engineering
Languages : en
Pages : 718
Book Description
Tomorrow's robots, which includes the humanoid robot, can perform task like tutoring children, working as tour guides, driving humans to and from work, do the family shopping etc. Tomorrow's robots will enhance lives in ways we never dreamed possible. No time to attend the decisive meeting on Asian strategy? Let your robot go for you and make the decisions. Not feeling well enough to go to the clinic? Let Dr Robot come to you, make a diagnosis, and get you the necessary medicine for treatment. No time to coach the soccer team this week? Let the robot do it for you.Tomorrow's robots will be the most exciting and revolutionary things to happen to the world since the invention of the automobile. It will change the way we work, play, think, and live. Because of this, nowadays robotics is one of the most dynamic fields of scientific research. These days, robotics is offered in almost every university in the world. Most mechanical engineering departments offer a similar course at both the undergraduate and graduate levels. And increasingly, many computer and electrical engineering departments are also offering it.This book will guide you, the curious beginner, from yesterday to tomorrow. The book will cover practical knowledge in understanding, developing, and using robots as versatile equipment to automate a variety of industrial processes or tasks. But, the book will also discuss the possibilities we can look forward to when we are capable of creating a vision-guided, learning machine.
Publisher: World Scientific Publishing Company
ISBN: 9813102349
Category : Technology & Engineering
Languages : en
Pages : 718
Book Description
Tomorrow's robots, which includes the humanoid robot, can perform task like tutoring children, working as tour guides, driving humans to and from work, do the family shopping etc. Tomorrow's robots will enhance lives in ways we never dreamed possible. No time to attend the decisive meeting on Asian strategy? Let your robot go for you and make the decisions. Not feeling well enough to go to the clinic? Let Dr Robot come to you, make a diagnosis, and get you the necessary medicine for treatment. No time to coach the soccer team this week? Let the robot do it for you.Tomorrow's robots will be the most exciting and revolutionary things to happen to the world since the invention of the automobile. It will change the way we work, play, think, and live. Because of this, nowadays robotics is one of the most dynamic fields of scientific research. These days, robotics is offered in almost every university in the world. Most mechanical engineering departments offer a similar course at both the undergraduate and graduate levels. And increasingly, many computer and electrical engineering departments are also offering it.This book will guide you, the curious beginner, from yesterday to tomorrow. The book will cover practical knowledge in understanding, developing, and using robots as versatile equipment to automate a variety of industrial processes or tasks. But, the book will also discuss the possibilities we can look forward to when we are capable of creating a vision-guided, learning machine.