Author: Alan Bain
Publisher: Springer Science & Business Media
ISBN: 0387768963
Category : Mathematics
Languages : en
Pages : 395
Book Description
This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.
Fundamentals of Stochastic Filtering
Author: Alan Bain
Publisher: Springer Science & Business Media
ISBN: 0387768963
Category : Mathematics
Languages : en
Pages : 395
Book Description
This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.
Publisher: Springer Science & Business Media
ISBN: 0387768963
Category : Mathematics
Languages : en
Pages : 395
Book Description
This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.
Stochastic Filtering with Applications in Finance
Author: Ramaprasad Bhar
Publisher: World Scientific
ISBN: 9814304859
Category : Business & Economics
Languages : en
Pages : 354
Book Description
This book provides a comprehensive account of stochastic filtering as a modeling tool in finance and economics. It aims to present this very important tool with a view to making it more popular among researchers in the disciplines of finance and economics. It is not intended to give a complete mathematical treatment of different stochastic filtering approaches, but rather to describe them in simple terms and illustrate their application with real historical data for problems normally encountered in these disciplines. Beyond laying out the steps to be implemented, the steps are demonstrated in the context of different market segments. Although no prior knowledge in this area is required, the reader is expected to have knowledge of probability theory as well as a general mathematical aptitude. Its simple presentation of complex algorithms required to solve modeling problems in increasingly sophisticated financial markets makes this book particularly valuable as a reference for graduate students and researchers interested in the field. Furthermore, it analyses the model estimation results in the context of the market and contrasts these with contemporary research publications. It is also suitable for use as a text for graduate level courses on stochastic modeling.
Publisher: World Scientific
ISBN: 9814304859
Category : Business & Economics
Languages : en
Pages : 354
Book Description
This book provides a comprehensive account of stochastic filtering as a modeling tool in finance and economics. It aims to present this very important tool with a view to making it more popular among researchers in the disciplines of finance and economics. It is not intended to give a complete mathematical treatment of different stochastic filtering approaches, but rather to describe them in simple terms and illustrate their application with real historical data for problems normally encountered in these disciplines. Beyond laying out the steps to be implemented, the steps are demonstrated in the context of different market segments. Although no prior knowledge in this area is required, the reader is expected to have knowledge of probability theory as well as a general mathematical aptitude. Its simple presentation of complex algorithms required to solve modeling problems in increasingly sophisticated financial markets makes this book particularly valuable as a reference for graduate students and researchers interested in the field. Furthermore, it analyses the model estimation results in the context of the market and contrasts these with contemporary research publications. It is also suitable for use as a text for graduate level courses on stochastic modeling.
Foundations of Deterministic and Stochastic Control
Author: Jon H. Davis
Publisher: Springer Science & Business Media
ISBN: 1461200717
Category : Mathematics
Languages : en
Pages : 434
Book Description
"This volume is a textbook on linear control systems with an emphasis on stochastic optimal control with solution methods using spectral factorization in line with the original approach of N. Wiener. Continuous-time and discrete-time versions are presented in parallel.... Two appendices introduce functional analytic concepts and probability theory, and there are 77 references and an index. The chapters (except for the last two) end with problems.... [T]he book presents in a clear way important concepts of control theory and can be used for teaching." —Zentralblatt Math "This is a textbook intended for use in courses on linear control and filtering and estimation on (advanced) levels. Its major purpose is an introduction to both deterministic and stochastic control and estimation. Topics are treated in both continuous time and discrete time versions.... Each chapter involves problems and exercises, and the book is supplemented by appendices, where fundamentals on Hilbert and Banach spaces, operator theory, and measure theoretic probability may be found. The book will be very useful for students, but also for a variety of specialists interested in deterministic and stochastic control and filtering." —Applications of Mathematics "The strength of the book under review lies in the choice of specialized topics it contains, which may not be found in this form elsewhere. Also, the first half would make a good standard course in linear control." —Journal of the Indian Institute of Science
Publisher: Springer Science & Business Media
ISBN: 1461200717
Category : Mathematics
Languages : en
Pages : 434
Book Description
"This volume is a textbook on linear control systems with an emphasis on stochastic optimal control with solution methods using spectral factorization in line with the original approach of N. Wiener. Continuous-time and discrete-time versions are presented in parallel.... Two appendices introduce functional analytic concepts and probability theory, and there are 77 references and an index. The chapters (except for the last two) end with problems.... [T]he book presents in a clear way important concepts of control theory and can be used for teaching." —Zentralblatt Math "This is a textbook intended for use in courses on linear control and filtering and estimation on (advanced) levels. Its major purpose is an introduction to both deterministic and stochastic control and estimation. Topics are treated in both continuous time and discrete time versions.... Each chapter involves problems and exercises, and the book is supplemented by appendices, where fundamentals on Hilbert and Banach spaces, operator theory, and measure theoretic probability may be found. The book will be very useful for students, but also for a variety of specialists interested in deterministic and stochastic control and filtering." —Applications of Mathematics "The strength of the book under review lies in the choice of specialized topics it contains, which may not be found in this form elsewhere. Also, the first half would make a good standard course in linear control." —Journal of the Indian Institute of Science
Adaptive Filtering
Author: Alexander D. Poularikas
Publisher: CRC Press
ISBN: 1482253364
Category : Mathematics
Languages : en
Pages : 363
Book Description
Adaptive filters are used in many diverse applications, appearing in everything from military instruments to cellphones and home appliances. Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® covers the core concepts of this important field, focusing on a vital part of the statistical signal processing area—the least mean square (LMS) adaptive filter. This largely self-contained text: Discusses random variables, stochastic processes, vectors, matrices, determinants, discrete random signals, and probability distributions Explains how to find the eigenvalues and eigenvectors of a matrix and the properties of the error surfaces Explores the Wiener filter and its practical uses, details the steepest descent method, and develops the Newton’s algorithm Addresses the basics of the LMS adaptive filter algorithm, considers LMS adaptive filter variants, and provides numerous examples Delivers a concise introduction to MATLAB®, supplying problems, computer experiments, and more than 110 functions and script files Featuring robust appendices complete with mathematical tables and formulas, Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® clearly describes the key principles of adaptive filtering and effectively demonstrates how to apply them to solve real-world problems.
Publisher: CRC Press
ISBN: 1482253364
Category : Mathematics
Languages : en
Pages : 363
Book Description
Adaptive filters are used in many diverse applications, appearing in everything from military instruments to cellphones and home appliances. Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® covers the core concepts of this important field, focusing on a vital part of the statistical signal processing area—the least mean square (LMS) adaptive filter. This largely self-contained text: Discusses random variables, stochastic processes, vectors, matrices, determinants, discrete random signals, and probability distributions Explains how to find the eigenvalues and eigenvectors of a matrix and the properties of the error surfaces Explores the Wiener filter and its practical uses, details the steepest descent method, and develops the Newton’s algorithm Addresses the basics of the LMS adaptive filter algorithm, considers LMS adaptive filter variants, and provides numerous examples Delivers a concise introduction to MATLAB®, supplying problems, computer experiments, and more than 110 functions and script files Featuring robust appendices complete with mathematical tables and formulas, Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® clearly describes the key principles of adaptive filtering and effectively demonstrates how to apply them to solve real-world problems.
Kalman Filtering
Author: Mohinder S. Grewal
Publisher: John Wiley & Sons
ISBN: 111898496X
Category : Technology & Engineering
Languages : en
Pages : 639
Book Description
The definitive textbook and professional reference on Kalman Filtering – fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering. Authors Grewal and Andrews draw upon their decades of experience to offer an in-depth examination of the subtleties, common pitfalls, and limitations of estimation theory as it applies to real-world situations. They present many illustrative examples including adaptations for nonlinear filtering, global navigation satellite systems, the error modeling of gyros and accelerometers, inertial navigation systems, and freeway traffic control. Kalman Filtering: Theory and Practice Using MATLAB, Fourth Edition is an ideal textbook in advanced undergraduate and beginning graduate courses in stochastic processes and Kalman filtering. It is also appropriate for self-instruction or review by practicing engineers and scientists who want to learn more about this important topic.
Publisher: John Wiley & Sons
ISBN: 111898496X
Category : Technology & Engineering
Languages : en
Pages : 639
Book Description
The definitive textbook and professional reference on Kalman Filtering – fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering. Authors Grewal and Andrews draw upon their decades of experience to offer an in-depth examination of the subtleties, common pitfalls, and limitations of estimation theory as it applies to real-world situations. They present many illustrative examples including adaptations for nonlinear filtering, global navigation satellite systems, the error modeling of gyros and accelerometers, inertial navigation systems, and freeway traffic control. Kalman Filtering: Theory and Practice Using MATLAB, Fourth Edition is an ideal textbook in advanced undergraduate and beginning graduate courses in stochastic processes and Kalman filtering. It is also appropriate for self-instruction or review by practicing engineers and scientists who want to learn more about this important topic.
Fundamentals of Stochastic Filtering
Author: Alan Bain
Publisher: Springer
ISBN: 9780387568546
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.
Publisher: Springer
ISBN: 9780387568546
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.
Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises and Solutions
Author: Robert Grover Brown
Publisher: Wiley-Liss
ISBN:
Category : Computers
Languages : en
Pages : 504
Book Description
In this updated edition the main thrust is on applied Kalman filtering. Chapters 1-3 provide a minimal background in random process theory and the response of linear systems to random inputs. The following chapter is devoted to Wiener filtering and the remainder of the text deals with various facets of Kalman filtering with emphasis on applications. Starred problems at the end of each chapter are computer exercises. The authors believe that programming the equations and analyzing the results of specific examples is the best way to obtain the insight that is essential in engineering work.
Publisher: Wiley-Liss
ISBN:
Category : Computers
Languages : en
Pages : 504
Book Description
In this updated edition the main thrust is on applied Kalman filtering. Chapters 1-3 provide a minimal background in random process theory and the response of linear systems to random inputs. The following chapter is devoted to Wiener filtering and the remainder of the text deals with various facets of Kalman filtering with emphasis on applications. Starred problems at the end of each chapter are computer exercises. The authors believe that programming the equations and analyzing the results of specific examples is the best way to obtain the insight that is essential in engineering work.
Bayesian Filtering and Smoothing
Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 110703065X
Category : Computers
Languages : en
Pages : 255
Book Description
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Publisher: Cambridge University Press
ISBN: 110703065X
Category : Computers
Languages : en
Pages : 255
Book Description
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Dynamic Markov Bridges and Market Microstructure
Author: Umut Çetin
Publisher: Springer
ISBN: 1493988352
Category : Mathematics
Languages : en
Pages : 239
Book Description
This book undertakes a detailed construction of Dynamic Markov Bridges using a combination of theory and real-world applications to drive home important concepts and methodologies. In Part I, theory is developed using tools from stochastic filtering, partial differential equations, Markov processes, and their interplay. Part II is devoted to the applications of the theory developed in Part I to asymmetric information models among financial agents, which include a strategic risk-neutral insider who possesses a private signal concerning the future value of the traded asset, non-strategic noise traders, and competitive risk-neutral market makers. A thorough analysis of optimality conditions for risk-neutral insiders is provided and the implications on equilibrium of non-Gaussian extensions are discussed. A Markov bridge, first considered by Paul Lévy in the context of Brownian motion, is a mathematical system that undergoes changes in value from one state to another when the initial and final states are fixed. Markov bridges have many applications as stochastic models of real-world processes, especially within the areas of Economics and Finance. The construction of a Dynamic Markov Bridge, a useful extension of Markov bridge theory, addresses several important questions concerning how financial markets function, among them: how the presence of an insider trader impacts market efficiency; how insider trading on financial markets can be detected; how information assimilates in market prices; and the optimal pricing policy of a particular market maker. Principles in this book will appeal to probabilists, statisticians, economists, researchers, and graduate students interested in Markov bridges and market microstructure theory.
Publisher: Springer
ISBN: 1493988352
Category : Mathematics
Languages : en
Pages : 239
Book Description
This book undertakes a detailed construction of Dynamic Markov Bridges using a combination of theory and real-world applications to drive home important concepts and methodologies. In Part I, theory is developed using tools from stochastic filtering, partial differential equations, Markov processes, and their interplay. Part II is devoted to the applications of the theory developed in Part I to asymmetric information models among financial agents, which include a strategic risk-neutral insider who possesses a private signal concerning the future value of the traded asset, non-strategic noise traders, and competitive risk-neutral market makers. A thorough analysis of optimality conditions for risk-neutral insiders is provided and the implications on equilibrium of non-Gaussian extensions are discussed. A Markov bridge, first considered by Paul Lévy in the context of Brownian motion, is a mathematical system that undergoes changes in value from one state to another when the initial and final states are fixed. Markov bridges have many applications as stochastic models of real-world processes, especially within the areas of Economics and Finance. The construction of a Dynamic Markov Bridge, a useful extension of Markov bridge theory, addresses several important questions concerning how financial markets function, among them: how the presence of an insider trader impacts market efficiency; how insider trading on financial markets can be detected; how information assimilates in market prices; and the optimal pricing policy of a particular market maker. Principles in this book will appeal to probabilists, statisticians, economists, researchers, and graduate students interested in Markov bridges and market microstructure theory.
Implicit Filtering
Author: C. T. Kelley
Publisher: SIAM
ISBN: 1611971896
Category : Mathematics
Languages : en
Pages : 171
Book Description
A description of the implicit filtering algorithm, its convergence theory and a new MATLAB® implementation.
Publisher: SIAM
ISBN: 1611971896
Category : Mathematics
Languages : en
Pages : 171
Book Description
A description of the implicit filtering algorithm, its convergence theory and a new MATLAB® implementation.