Author: Wesley E. Snyder
Publisher: Cambridge University Press
ISBN: 1316885828
Category : Computers
Languages : en
Pages : 395
Book Description
Computer vision has widespread and growing application including robotics, autonomous vehicles, medical imaging and diagnosis, surveillance, video analysis, and even tracking for sports analysis. This book equips the reader with crucial mathematical and algorithmic tools to develop a thorough understanding of the underlying components of any complete computer vision system and to design such systems. These components include identifying local features such as corners or edges in the presence of noise, edge preserving smoothing, connected component labeling, stereopsis, thresholding, clustering, segmentation, and describing and matching both shapes and scenes. The extensive examples include photographs of faces, cartoons, animal footprints, and angiograms, and each chapter concludes with homework exercises and suggested projects. Intended for advanced undergraduate and beginning graduate students, the text will also be of use to practitioners and researchers in a range of applications.
Fundamentals of Computer Vision
Author: Wesley E. Snyder
Publisher: Cambridge University Press
ISBN: 1316885828
Category : Computers
Languages : en
Pages : 395
Book Description
Computer vision has widespread and growing application including robotics, autonomous vehicles, medical imaging and diagnosis, surveillance, video analysis, and even tracking for sports analysis. This book equips the reader with crucial mathematical and algorithmic tools to develop a thorough understanding of the underlying components of any complete computer vision system and to design such systems. These components include identifying local features such as corners or edges in the presence of noise, edge preserving smoothing, connected component labeling, stereopsis, thresholding, clustering, segmentation, and describing and matching both shapes and scenes. The extensive examples include photographs of faces, cartoons, animal footprints, and angiograms, and each chapter concludes with homework exercises and suggested projects. Intended for advanced undergraduate and beginning graduate students, the text will also be of use to practitioners and researchers in a range of applications.
Publisher: Cambridge University Press
ISBN: 1316885828
Category : Computers
Languages : en
Pages : 395
Book Description
Computer vision has widespread and growing application including robotics, autonomous vehicles, medical imaging and diagnosis, surveillance, video analysis, and even tracking for sports analysis. This book equips the reader with crucial mathematical and algorithmic tools to develop a thorough understanding of the underlying components of any complete computer vision system and to design such systems. These components include identifying local features such as corners or edges in the presence of noise, edge preserving smoothing, connected component labeling, stereopsis, thresholding, clustering, segmentation, and describing and matching both shapes and scenes. The extensive examples include photographs of faces, cartoons, animal footprints, and angiograms, and each chapter concludes with homework exercises and suggested projects. Intended for advanced undergraduate and beginning graduate students, the text will also be of use to practitioners and researchers in a range of applications.
A Guide for Machine Vision in Quality Control
Author: Sheila Anand
Publisher: CRC Press
ISBN: 1000753816
Category : Computers
Languages : en
Pages : 193
Book Description
Machine Vision systems combine image processing with industrial automation. One of the primary areas of application of Machine Vision in the Industry is in the area of Quality Control. Machine vision provides fast, economic and reliable inspection that improves quality as well as business productivity. Building machine vision applications is a challenging task as each application is unique, with its own requirements and desired outcome. A Guide to Machine Vision in Quality Control follows a practitioner’s approach to learning machine vision. The book provides guidance on how to build machine vision systems for quality inspections. Practical applications from the Industry have been discussed to provide a good understanding of usage of machine vision for quality control. Real-world case studies have been used to explain the process of building machine vision solutions. The book offers comprehensive coverage of the essential topics, that includes: Introduction to Machine Vision Fundamentals of Digital Images Discussion of various machine vision system components Digital image processing related to quality control Overview of automation The book can be used by students and academics, as well as by industry professionals, to understand the fundamentals of machine vision. Updates to the on-going technological innovations have been provided with a discussion on emerging trends in machine vision and smart factories of the future. Sheila Anand is a PhD graduate and Professor at Rajalakshmi Engineering College, Chennai, India. She has over three decades of experience in teaching, consultancy and research. She has worked in the software industry and has extensive experience in development of software applications and in systems audit of financial, manufacturing and trading organizations. She guides Ph.D. aspirants and many of her research scholars have since been awarded their doctoral degree. She has published many papers in national and international journals and is a reviewer for several journals of repute. L Priya is a PhD graduate working as Associate Professor and Head, Department of Information Technology at Rajalakshmi Engineering College, Chennai, India. She has nearly two decades of teaching experience and good exposure to consultancy and research. She has delivered many invited talks, presented papers and won several paper awards in International Conferences. She has published several papers in International journals and is a reviewer for SCI indexed journals. Her areas of interest include Machine Vision, Wireless Communication and Machine Learning.
Publisher: CRC Press
ISBN: 1000753816
Category : Computers
Languages : en
Pages : 193
Book Description
Machine Vision systems combine image processing with industrial automation. One of the primary areas of application of Machine Vision in the Industry is in the area of Quality Control. Machine vision provides fast, economic and reliable inspection that improves quality as well as business productivity. Building machine vision applications is a challenging task as each application is unique, with its own requirements and desired outcome. A Guide to Machine Vision in Quality Control follows a practitioner’s approach to learning machine vision. The book provides guidance on how to build machine vision systems for quality inspections. Practical applications from the Industry have been discussed to provide a good understanding of usage of machine vision for quality control. Real-world case studies have been used to explain the process of building machine vision solutions. The book offers comprehensive coverage of the essential topics, that includes: Introduction to Machine Vision Fundamentals of Digital Images Discussion of various machine vision system components Digital image processing related to quality control Overview of automation The book can be used by students and academics, as well as by industry professionals, to understand the fundamentals of machine vision. Updates to the on-going technological innovations have been provided with a discussion on emerging trends in machine vision and smart factories of the future. Sheila Anand is a PhD graduate and Professor at Rajalakshmi Engineering College, Chennai, India. She has over three decades of experience in teaching, consultancy and research. She has worked in the software industry and has extensive experience in development of software applications and in systems audit of financial, manufacturing and trading organizations. She guides Ph.D. aspirants and many of her research scholars have since been awarded their doctoral degree. She has published many papers in national and international journals and is a reviewer for several journals of repute. L Priya is a PhD graduate working as Associate Professor and Head, Department of Information Technology at Rajalakshmi Engineering College, Chennai, India. She has nearly two decades of teaching experience and good exposure to consultancy and research. She has delivered many invited talks, presented papers and won several paper awards in International Conferences. She has published several papers in International journals and is a reviewer for SCI indexed journals. Her areas of interest include Machine Vision, Wireless Communication and Machine Learning.
Fundamentals of Machine Vision
Author: Harley R. Myler
Publisher: SPIE Press
ISBN: 9780819430496
Category : Computers
Languages : en
Pages : 156
Book Description
This text is intended to help readers understand and construct machine vision systems that perform useful tasks, based on the state of the art. It covers fundamentals drawn from image processing and computer graphics to the methods of applied machine vision techniques. The text is useful as a short course supplement, as a self-study guide, or as a primary or supplementary text in an advanced undergraduate or graduate course.
Publisher: SPIE Press
ISBN: 9780819430496
Category : Computers
Languages : en
Pages : 156
Book Description
This text is intended to help readers understand and construct machine vision systems that perform useful tasks, based on the state of the art. It covers fundamentals drawn from image processing and computer graphics to the methods of applied machine vision techniques. The text is useful as a short course supplement, as a self-study guide, or as a primary or supplementary text in an advanced undergraduate or graduate course.
Computer Vision and Image Processing
Author: Manas Kamal Bhuyan
Publisher: CRC Press
ISBN: 1351248383
Category : Computers
Languages : en
Pages : 465
Book Description
The book familiarizes readers with fundamental concepts and issues related to computer vision and major approaches that address them. The focus of the book is on image acquisition and image formation models, radiometric models of image formation, image formation in the camera, image processing concepts, concept of feature extraction and feature selection for pattern classification/recognition, and advanced concepts like object classification, object tracking, image-based rendering, and image registration. Intended to be a companion to a typical teaching course on computer vision, the book takes a problem-solving approach.
Publisher: CRC Press
ISBN: 1351248383
Category : Computers
Languages : en
Pages : 465
Book Description
The book familiarizes readers with fundamental concepts and issues related to computer vision and major approaches that address them. The focus of the book is on image acquisition and image formation models, radiometric models of image formation, image formation in the camera, image processing concepts, concept of feature extraction and feature selection for pattern classification/recognition, and advanced concepts like object classification, object tracking, image-based rendering, and image registration. Intended to be a companion to a typical teaching course on computer vision, the book takes a problem-solving approach.
Computer Vision
Author: Simon J. D. Prince
Publisher: Cambridge University Press
ISBN: 1107011795
Category : Computers
Languages : en
Pages : 599
Book Description
A modern treatment focusing on learning and inference, with minimal prerequisites, real-world examples and implementable algorithms.
Publisher: Cambridge University Press
ISBN: 1107011795
Category : Computers
Languages : en
Pages : 599
Book Description
A modern treatment focusing on learning and inference, with minimal prerequisites, real-world examples and implementable algorithms.
Computer Vision
Author: E. R. Davies
Publisher: Academic Press
ISBN: 012809575X
Category : Computers
Languages : en
Pages : 902
Book Description
Computer Vision: Principles, Algorithms, Applications, Learning (previously entitled Computer and Machine Vision) clearly and systematically presents the basic methodology of computer vision, covering the essential elements of the theory while emphasizing algorithmic and practical design constraints. This fully revised fifth edition has brought in more of the concepts and applications of computer vision, making it a very comprehensive and up-to-date text suitable for undergraduate and graduate students, researchers and R&D engineers working in this vibrant subject. See an interview with the author explaining his approach to teaching and learning computer vision - http://scitechconnect.elsevier.com/computer-vision/ - Three new chapters on Machine Learning emphasise the way the subject has been developing; Two chapters cover Basic Classification Concepts and Probabilistic Models; and the The third covers the principles of Deep Learning Networks and shows their impact on computer vision, reflected in a new chapter Face Detection and Recognition. - A new chapter on Object Segmentation and Shape Models reflects the methodology of machine learning and gives practical demonstrations of its application. - In-depth discussions have been included on geometric transformations, the EM algorithm, boosting, semantic segmentation, face frontalisation, RNNs and other key topics. - Examples and applications—including the location of biscuits, foreign bodies, faces, eyes, road lanes, surveillance, vehicles and pedestrians—give the 'ins and outs' of developing real-world vision systems, showing the realities of practical implementation. - Necessary mathematics and essential theory are made approachable by careful explanations and well-illustrated examples. - The 'recent developments' sections included in each chapter aim to bring students and practitioners up to date with this fast-moving subject. - Tailored programming examples—code, methods, illustrations, tasks, hints and solutions (mainly involving MATLAB and C++)
Publisher: Academic Press
ISBN: 012809575X
Category : Computers
Languages : en
Pages : 902
Book Description
Computer Vision: Principles, Algorithms, Applications, Learning (previously entitled Computer and Machine Vision) clearly and systematically presents the basic methodology of computer vision, covering the essential elements of the theory while emphasizing algorithmic and practical design constraints. This fully revised fifth edition has brought in more of the concepts and applications of computer vision, making it a very comprehensive and up-to-date text suitable for undergraduate and graduate students, researchers and R&D engineers working in this vibrant subject. See an interview with the author explaining his approach to teaching and learning computer vision - http://scitechconnect.elsevier.com/computer-vision/ - Three new chapters on Machine Learning emphasise the way the subject has been developing; Two chapters cover Basic Classification Concepts and Probabilistic Models; and the The third covers the principles of Deep Learning Networks and shows their impact on computer vision, reflected in a new chapter Face Detection and Recognition. - A new chapter on Object Segmentation and Shape Models reflects the methodology of machine learning and gives practical demonstrations of its application. - In-depth discussions have been included on geometric transformations, the EM algorithm, boosting, semantic segmentation, face frontalisation, RNNs and other key topics. - Examples and applications—including the location of biscuits, foreign bodies, faces, eyes, road lanes, surveillance, vehicles and pedestrians—give the 'ins and outs' of developing real-world vision systems, showing the realities of practical implementation. - Necessary mathematics and essential theory are made approachable by careful explanations and well-illustrated examples. - The 'recent developments' sections included in each chapter aim to bring students and practitioners up to date with this fast-moving subject. - Tailored programming examples—code, methods, illustrations, tasks, hints and solutions (mainly involving MATLAB and C++)
Machine Learning Fundamentals
Author: Hui Jiang
Publisher: Cambridge University Press
ISBN: 1108837042
Category : Computers
Languages : en
Pages : 423
Book Description
A coherent introduction to core concepts and deep learning techniques that are critical to academic research and real-world applications.
Publisher: Cambridge University Press
ISBN: 1108837042
Category : Computers
Languages : en
Pages : 423
Book Description
A coherent introduction to core concepts and deep learning techniques that are critical to academic research and real-world applications.
Handbook Of Industrial Automation
Author: Richard Shell
Publisher: CRC Press
ISBN: 9780203908587
Category : Business & Economics
Languages : en
Pages : 912
Book Description
Supplies the most essential concepts and methods necessary to capitalize on the innovations of industrial automation, including mathematical fundamentals, ergonometrics, industrial robotics, government safety regulations, and economic analyses.
Publisher: CRC Press
ISBN: 9780203908587
Category : Business & Economics
Languages : en
Pages : 912
Book Description
Supplies the most essential concepts and methods necessary to capitalize on the innovations of industrial automation, including mathematical fundamentals, ergonometrics, industrial robotics, government safety regulations, and economic analyses.
Basic Fundamentals of machine learning
Author: Balaji Ramkumar Rajagopal
Publisher: Academic Guru Publishing House
ISBN: 9394339086
Category : Antiques & Collectibles
Languages : en
Pages : 190
Book Description
Machine learning consists of designing efficient and accurate prediction algorithms. As in other areas of computer science, some critical measures of the quality of these algorithms are their time and space complexity. But, in machine learning, we will need additionally a notion of sample complexity to evaluate the sample size required for the algorithm to learn a family of concepts. More generally, theoretical learning guarantees for an algorithm depend on the complexity of the concept classes considered and the size of the training sample. Machine learning, at its core, is concerned with algorithms that transform information into actionable intelligence. This fact makes machine learning well-suited to the present day era of Big Data. Without machine learning, it would be nearly impossible to keep up with the massive stream of information. Intention of author is to pursue a middle ground between a theoretical textbook and one that focuses on applications. The book concentrates on the important ideas in machine learning. The book is not a handbook of machine learning practice; instead, the goal is to give the reader sufficient preparation to make the extensive literature on machine learning accessible.
Publisher: Academic Guru Publishing House
ISBN: 9394339086
Category : Antiques & Collectibles
Languages : en
Pages : 190
Book Description
Machine learning consists of designing efficient and accurate prediction algorithms. As in other areas of computer science, some critical measures of the quality of these algorithms are their time and space complexity. But, in machine learning, we will need additionally a notion of sample complexity to evaluate the sample size required for the algorithm to learn a family of concepts. More generally, theoretical learning guarantees for an algorithm depend on the complexity of the concept classes considered and the size of the training sample. Machine learning, at its core, is concerned with algorithms that transform information into actionable intelligence. This fact makes machine learning well-suited to the present day era of Big Data. Without machine learning, it would be nearly impossible to keep up with the massive stream of information. Intention of author is to pursue a middle ground between a theoretical textbook and one that focuses on applications. The book concentrates on the important ideas in machine learning. The book is not a handbook of machine learning practice; instead, the goal is to give the reader sufficient preparation to make the extensive literature on machine learning accessible.
Fundamentals Of Machine Learning & Artificial Intelligence
Author: Dr. Abdul Rahiman Sheik
Publisher: Academic Guru Publishing House
ISBN: 8119338553
Category : Study Aids
Languages : en
Pages : 215
Book Description
An upcoming game-changing technology that is disrupting the digital & computer technology age is artificial intelligence (AI). The whole of the information technology industry has adopted the use of machine learning & artificial algorithms in order to automate processes and provide robust outcomes. This book will familiarize you with the fundamental concepts and important phrases of the area of computer science that is seeing the most rapid expansion, as well as: An explanation of the many methods and algorithms that are utilized in machine learning, including why & how they are used as well as the tools that are necessary. Where to get data, which languages are most suited for machine learning, and what kinds of technologies are available to assist you with your task. This book provides an introduction to the foundations of contemporary artificial intelligence (AI), as well as coverage of recent developments in AI, such as Automated Planning, Information Retrieval, Intelligent Agents, Natural Language and Speech Processing, and Machine Vision. A short historical background can be found at the beginning of each chapter. This book explains, in terminology that is easy to understand, almost all of the components of artificial intelligence, including problem solving, search strategies, knowledge concepts, expert systems, and many more.
Publisher: Academic Guru Publishing House
ISBN: 8119338553
Category : Study Aids
Languages : en
Pages : 215
Book Description
An upcoming game-changing technology that is disrupting the digital & computer technology age is artificial intelligence (AI). The whole of the information technology industry has adopted the use of machine learning & artificial algorithms in order to automate processes and provide robust outcomes. This book will familiarize you with the fundamental concepts and important phrases of the area of computer science that is seeing the most rapid expansion, as well as: An explanation of the many methods and algorithms that are utilized in machine learning, including why & how they are used as well as the tools that are necessary. Where to get data, which languages are most suited for machine learning, and what kinds of technologies are available to assist you with your task. This book provides an introduction to the foundations of contemporary artificial intelligence (AI), as well as coverage of recent developments in AI, such as Automated Planning, Information Retrieval, Intelligent Agents, Natural Language and Speech Processing, and Machine Vision. A short historical background can be found at the beginning of each chapter. This book explains, in terminology that is easy to understand, almost all of the components of artificial intelligence, including problem solving, search strategies, knowledge concepts, expert systems, and many more.