Author: M. M. Postnikov
Publisher: Courier Corporation
ISBN: 9780486435183
Category : Mathematics
Languages : en
Pages : 132
Book Description
Written by a prominent mathematician, this text offers advanced undergraduate and graduate students a virtually self-contained treatment of the basics of Galois theory. The source of modern abstract algebra and one of abstract algebra's most concrete applications, Galois theory serves as an excellent introduction to group theory and provides a strong, historically relevant motivation for the introduction of the basics of abstract algebra. This two-part treatment begins with the elements of Galois theory, focusing on related concepts from field theory, including the structure of important types of extensions and the field of algebraic numbers. A consideration of relevant facts from group theory leads to a survey of Galois theory, with discussions of normal extensions, the order and correspondence of the Galois group, and Galois groups of a normal subfield and of two fields. The second part explores the solution of equations by radicals, returning to the general theory of groups for relevant facts, examining equations solvable by radicals and their construction, and concluding with the unsolvability by radicals of the general equation of degree n ≥ 5.
Foundations of Galois Theory
Author: M. M. Postnikov
Publisher: Courier Corporation
ISBN: 9780486435183
Category : Mathematics
Languages : en
Pages : 132
Book Description
Written by a prominent mathematician, this text offers advanced undergraduate and graduate students a virtually self-contained treatment of the basics of Galois theory. The source of modern abstract algebra and one of abstract algebra's most concrete applications, Galois theory serves as an excellent introduction to group theory and provides a strong, historically relevant motivation for the introduction of the basics of abstract algebra. This two-part treatment begins with the elements of Galois theory, focusing on related concepts from field theory, including the structure of important types of extensions and the field of algebraic numbers. A consideration of relevant facts from group theory leads to a survey of Galois theory, with discussions of normal extensions, the order and correspondence of the Galois group, and Galois groups of a normal subfield and of two fields. The second part explores the solution of equations by radicals, returning to the general theory of groups for relevant facts, examining equations solvable by radicals and their construction, and concluding with the unsolvability by radicals of the general equation of degree n ≥ 5.
Publisher: Courier Corporation
ISBN: 9780486435183
Category : Mathematics
Languages : en
Pages : 132
Book Description
Written by a prominent mathematician, this text offers advanced undergraduate and graduate students a virtually self-contained treatment of the basics of Galois theory. The source of modern abstract algebra and one of abstract algebra's most concrete applications, Galois theory serves as an excellent introduction to group theory and provides a strong, historically relevant motivation for the introduction of the basics of abstract algebra. This two-part treatment begins with the elements of Galois theory, focusing on related concepts from field theory, including the structure of important types of extensions and the field of algebraic numbers. A consideration of relevant facts from group theory leads to a survey of Galois theory, with discussions of normal extensions, the order and correspondence of the Galois group, and Galois groups of a normal subfield and of two fields. The second part explores the solution of equations by radicals, returning to the general theory of groups for relevant facts, examining equations solvable by radicals and their construction, and concluding with the unsolvability by radicals of the general equation of degree n ≥ 5.
Foundations of Galois Theory
Author: M.M. Postnikov
Publisher: Elsevier
ISBN: 1483156478
Category : Mathematics
Languages : en
Pages : 123
Book Description
Foundations of Galois Theory is an introduction to group theory, field theory, and the basic concepts of abstract algebra. The text is divided into two parts. Part I presents the elements of Galois Theory, in which chapters are devoted to the presentation of the elements of field theory, facts from the theory of groups, and the applications of Galois Theory. Part II focuses on the development of general Galois Theory and its use in the solution of equations by radicals. Equations that are solvable by radicals; the construction of equations solvable by radicals; and the unsolvability by radicals of the general equation of degree n ? 5 are discussed as well. Mathematicians, physicists, researchers, and students of mathematics will find this book highly useful.
Publisher: Elsevier
ISBN: 1483156478
Category : Mathematics
Languages : en
Pages : 123
Book Description
Foundations of Galois Theory is an introduction to group theory, field theory, and the basic concepts of abstract algebra. The text is divided into two parts. Part I presents the elements of Galois Theory, in which chapters are devoted to the presentation of the elements of field theory, facts from the theory of groups, and the applications of Galois Theory. Part II focuses on the development of general Galois Theory and its use in the solution of equations by radicals. Equations that are solvable by radicals; the construction of equations solvable by radicals; and the unsolvability by radicals of the general equation of degree n ? 5 are discussed as well. Mathematicians, physicists, researchers, and students of mathematics will find this book highly useful.
Fundamentals of Group Theory
Author: Steven Roman
Publisher: Springer Science & Business Media
ISBN: 0817683011
Category : Mathematics
Languages : en
Pages : 385
Book Description
Fundamentals of Group Theory provides a comprehensive account of the basic theory of groups. Both classic and unique topics in the field are covered, such as an historical look at how Galois viewed groups, a discussion of commutator and Sylow subgroups, and a presentation of Birkhoff’s theorem. Written in a clear and accessible style, the work presents a solid introduction for students wishing to learn more about this widely applicable subject area. This book will be suitable for graduate courses in group theory and abstract algebra, and will also have appeal to advanced undergraduates. In addition it will serve as a valuable resource for those pursuing independent study. Group Theory is a timely and fundamental addition to literature in the study of groups.
Publisher: Springer Science & Business Media
ISBN: 0817683011
Category : Mathematics
Languages : en
Pages : 385
Book Description
Fundamentals of Group Theory provides a comprehensive account of the basic theory of groups. Both classic and unique topics in the field are covered, such as an historical look at how Galois viewed groups, a discussion of commutator and Sylow subgroups, and a presentation of Birkhoff’s theorem. Written in a clear and accessible style, the work presents a solid introduction for students wishing to learn more about this widely applicable subject area. This book will be suitable for graduate courses in group theory and abstract algebra, and will also have appeal to advanced undergraduates. In addition it will serve as a valuable resource for those pursuing independent study. Group Theory is a timely and fundamental addition to literature in the study of groups.
Galois Theory
Author: Harold M. Edwards
Publisher:
ISBN:
Category : Galois theory
Languages : en
Pages : 176
Book Description
Publisher:
ISBN:
Category : Galois theory
Languages : en
Pages : 176
Book Description
Topics in Galois Theory
Author: Jean-Pierre Serre
Publisher: CRC Press
ISBN: 1439865256
Category : Mathematics
Languages : en
Pages : 136
Book Description
This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt constructi
Publisher: CRC Press
ISBN: 1439865256
Category : Mathematics
Languages : en
Pages : 136
Book Description
This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt constructi
Introduction to Abstract Algebra
Author: Benjamin Fine
Publisher: JHU Press
ISBN: 1421411776
Category : Mathematics
Languages : en
Pages : 583
Book Description
A new approach to abstract algebra that eases student anxieties by building on fundamentals. Introduction to Abstract Algebra presents a breakthrough approach to teaching one of math's most intimidating concepts. Avoiding the pitfalls common in the standard textbooks, Benjamin Fine, Anthony M. Gaglione, and Gerhard Rosenberger set a pace that allows beginner-level students to follow the progression from familiar topics such as rings, numbers, and groups to more difficult concepts. Classroom tested and revised until students achieved consistent, positive results, this textbook is designed to keep students focused as they learn complex topics. Fine, Gaglione, and Rosenberger's clear explanations prevent students from getting lost as they move deeper and deeper into areas such as abelian groups, fields, and Galois theory. This textbook will help bring about the day when abstract algebra no longer creates intense anxiety but instead challenges students to fully grasp the meaning and power of the approach. Topics covered include: • Rings • Integral domains • The fundamental theorem of arithmetic • Fields • Groups • Lagrange's theorem • Isomorphism theorems for groups • Fundamental theorem of finite abelian groups • The simplicity of An for n5 • Sylow theorems • The Jordan-Hölder theorem • Ring isomorphism theorems • Euclidean domains • Principal ideal domains • The fundamental theorem of algebra • Vector spaces • Algebras • Field extensions: algebraic and transcendental • The fundamental theorem of Galois theory • The insolvability of the quintic
Publisher: JHU Press
ISBN: 1421411776
Category : Mathematics
Languages : en
Pages : 583
Book Description
A new approach to abstract algebra that eases student anxieties by building on fundamentals. Introduction to Abstract Algebra presents a breakthrough approach to teaching one of math's most intimidating concepts. Avoiding the pitfalls common in the standard textbooks, Benjamin Fine, Anthony M. Gaglione, and Gerhard Rosenberger set a pace that allows beginner-level students to follow the progression from familiar topics such as rings, numbers, and groups to more difficult concepts. Classroom tested and revised until students achieved consistent, positive results, this textbook is designed to keep students focused as they learn complex topics. Fine, Gaglione, and Rosenberger's clear explanations prevent students from getting lost as they move deeper and deeper into areas such as abelian groups, fields, and Galois theory. This textbook will help bring about the day when abstract algebra no longer creates intense anxiety but instead challenges students to fully grasp the meaning and power of the approach. Topics covered include: • Rings • Integral domains • The fundamental theorem of arithmetic • Fields • Groups • Lagrange's theorem • Isomorphism theorems for groups • Fundamental theorem of finite abelian groups • The simplicity of An for n5 • Sylow theorems • The Jordan-Hölder theorem • Ring isomorphism theorems • Euclidean domains • Principal ideal domains • The fundamental theorem of algebra • Vector spaces • Algebras • Field extensions: algebraic and transcendental • The fundamental theorem of Galois theory • The insolvability of the quintic
Inverse Galois Theory
Author: Gunter Malle
Publisher: Springer Science & Business Media
ISBN: 3662121239
Category : Mathematics
Languages : en
Pages : 450
Book Description
A consistent and near complete survey of the important progress made in the field over the last few years, with the main emphasis on the rigidity method and its applications. Among others, this monograph presents the most successful existence theorems known and construction methods for Galois extensions as well as solutions for embedding problems combined with a collection of the existing Galois realizations.
Publisher: Springer Science & Business Media
ISBN: 3662121239
Category : Mathematics
Languages : en
Pages : 450
Book Description
A consistent and near complete survey of the important progress made in the field over the last few years, with the main emphasis on the rigidity method and its applications. Among others, this monograph presents the most successful existence theorems known and construction methods for Galois extensions as well as solutions for embedding problems combined with a collection of the existing Galois realizations.
Fundamental Concepts of Abstract Algebra
Author: Gertrude Ehrlich
Publisher: Courier Corporation
ISBN: 0486291863
Category : Mathematics
Languages : en
Pages : 354
Book Description
This undergraduate text presents extensive coverage of set theory, groups, rings, modules, vector spaces, and fields. It offers numerous examples, definitions, theorems, proofs, and practice exercises. 1991 edition.
Publisher: Courier Corporation
ISBN: 0486291863
Category : Mathematics
Languages : en
Pages : 354
Book Description
This undergraduate text presents extensive coverage of set theory, groups, rings, modules, vector spaces, and fields. It offers numerous examples, definitions, theorems, proofs, and practice exercises. 1991 edition.
Galois Theory
Author: Emil Artin
Publisher:
ISBN: 9781950217021
Category : Education
Languages : en
Pages : 54
Book Description
The author Emil Artin is known as one of the greatest mathematicians of the 20th century. He is regarded as a man who gave a modern outlook to Galois theory. Original lectures by the master. This emended edition is with completely new typesetting and corrections. The free PDF file available on the publisher's website www.bowwowpress.org
Publisher:
ISBN: 9781950217021
Category : Education
Languages : en
Pages : 54
Book Description
The author Emil Artin is known as one of the greatest mathematicians of the 20th century. He is regarded as a man who gave a modern outlook to Galois theory. Original lectures by the master. This emended edition is with completely new typesetting and corrections. The free PDF file available on the publisher's website www.bowwowpress.org
Visual Group Theory
Author: Nathan Carter
Publisher: American Mathematical Soc.
ISBN: 1470464330
Category : Education
Languages : en
Pages : 295
Book Description
Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2012! Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts, but its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.
Publisher: American Mathematical Soc.
ISBN: 1470464330
Category : Education
Languages : en
Pages : 295
Book Description
Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2012! Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts, but its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.