Functionalization of Metal-organic Frameworks with Early Transition Metals

Functionalization of Metal-organic Frameworks with Early Transition Metals PDF Author: Maciej Damian Korzyński
Publisher:
ISBN:
Category :
Languages : en
Pages : 217

Get Book Here

Book Description
Metal-organic frameworks (MOFs) have established themselves as some of the most versatile materials available, with applications ranging from gas sorption to separation to sensing to catalysis. With a large abundance of structural motifs published to date, research efforts have shifted towards further framework elaboration via post-synthetic modification (PSM), a method to alter the chemical structure of preformed MOFs. The secondary building units (SBUs) of MOFs, which are commonly small inorganic clusters, have been particularly interesting targets for this synthetic approach. The aim of this thesis is to further our understanding of how metal cations interact with these inorganic nodes. Additionally, the node functionalization approach is used to synthesize novel catalysts for the olefin metathesis reaction. In Chapter 1, the reader is introduced to post-synthetic modification of MOFs with a focus on early transition metal species. A review of pertinent literature is presented. Chapter 2 describes how a desire to challenge the limits of the well-precedented cation exchange process led to a serendipitous discovery of a long-sought binding mode in the iconic MOF-5 system using NbCl4(THF)2 as a precursor of niobium. In Chapter 3, attention shifts from fundamental studies to the development of new catalysts for olefin metathesis, a process that to (late has been not been extensively studied in MOFs. After a short introduction about the traditional olefin metathesis catalysis, the prospect of using the inorganic nodes of MOFs as supports akin to the classical platforms used in heterogeneous catalysis is explored. Chapter 4 expands the concepts developed in the previous chapter to rhenium oxide-based olefin metathesis, which is unique compared to catalysis using molybdenum and tungsten oxide systems.

Functionalization of Metal-organic Frameworks with Early Transition Metals

Functionalization of Metal-organic Frameworks with Early Transition Metals PDF Author: Maciej Damian Korzyński
Publisher:
ISBN:
Category :
Languages : en
Pages : 217

Get Book Here

Book Description
Metal-organic frameworks (MOFs) have established themselves as some of the most versatile materials available, with applications ranging from gas sorption to separation to sensing to catalysis. With a large abundance of structural motifs published to date, research efforts have shifted towards further framework elaboration via post-synthetic modification (PSM), a method to alter the chemical structure of preformed MOFs. The secondary building units (SBUs) of MOFs, which are commonly small inorganic clusters, have been particularly interesting targets for this synthetic approach. The aim of this thesis is to further our understanding of how metal cations interact with these inorganic nodes. Additionally, the node functionalization approach is used to synthesize novel catalysts for the olefin metathesis reaction. In Chapter 1, the reader is introduced to post-synthetic modification of MOFs with a focus on early transition metal species. A review of pertinent literature is presented. Chapter 2 describes how a desire to challenge the limits of the well-precedented cation exchange process led to a serendipitous discovery of a long-sought binding mode in the iconic MOF-5 system using NbCl4(THF)2 as a precursor of niobium. In Chapter 3, attention shifts from fundamental studies to the development of new catalysts for olefin metathesis, a process that to (late has been not been extensively studied in MOFs. After a short introduction about the traditional olefin metathesis catalysis, the prospect of using the inorganic nodes of MOFs as supports akin to the classical platforms used in heterogeneous catalysis is explored. Chapter 4 expands the concepts developed in the previous chapter to rhenium oxide-based olefin metathesis, which is unique compared to catalysis using molybdenum and tungsten oxide systems.

Introduction to Reticular Chemistry

Introduction to Reticular Chemistry PDF Author: Omar M. Yaghi
Publisher: John Wiley & Sons
ISBN: 3527821104
Category : Science
Languages : en
Pages : 684

Get Book Here

Book Description
A concise introduction to the chemistry and design principles behind important metal-organic frameworks and related porous materials Reticular chemistry has been applied to synthesize new classes of porous materials that are successfully used for myraid applications in areas such as gas separation, catalysis, energy, and electronics. Introduction to Reticular Chemistry gives an unique overview of the principles of the chemistry behind metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolitic imidazolate frameworks (ZIFs). Written by one of the pioneers in the field, this book covers all important aspects of reticular chemistry, including design and synthesis, properties and characterization, as well as current and future applications Designed to be an accessible resource, the book is written in an easy-to-understand style. It includes an extensive bibliography, and offers figures and videos of crystal structures that are available as an electronic supplement. Introduction to Reticular Chemistry: -Describes the underlying principles and design elements for the synthesis of important metal-organic frameworks (MOFs) and related materials -Discusses both real-life and future applications in various fields, such as clean energy and water adsorption -Offers all graphic material on a companion website -Provides first-hand knowledge by Omar Yaghi, one of the pioneers in the field, and his team. Aimed at graduate students in chemistry, structural chemists, inorganic chemists, organic chemists, catalytic chemists, and others, Introduction to Reticular Chemistry is a groundbreaking book that explores the chemistry principles and applications of MOFs, COFs, and ZIFs.

Functional Metal-Organic Frameworks

Functional Metal-Organic Frameworks PDF Author: Ali Morsali
Publisher: John Wiley & Sons
ISBN: 1119640431
Category : Science
Languages : en
Pages : 256

Get Book Here

Book Description
Owing to the extensive interest in construction of functional metal organic frameworks (FMOFs), this book discusses the roles of functional groups on the structure and application of metal organic frameworks (MOFs). The contents of the book are classified based on the structural and chemical properties of organic functions, in order to make readers able to compare the different effects of each function on the structure and application of the MOFs. In each chapter, the chemical properties of applied functional groups are gathered to give deeper insight into the roles of organic functions in the structure and application of MOFs. In the function-application properties, the authors discuss how a functional group can dominate the host-guest chemistry of the MOFs and how this host-guest chemistry can expand the effectiveness and efficiency of the material in different fields of applications. Finally, function-structure properties are discussed. In function-application properties, it is discussed how a functional group can affect the topology, porosity, flexibility and stability of the framework. The features of this subject are novel and are presented for the first time.

Diversification and Functionalization of Organic Components in Metal-Organic Frameworks

Diversification and Functionalization of Organic Components in Metal-Organic Frameworks PDF Author: Noelle Ruiz Catarineu
Publisher:
ISBN:
Category :
Languages : en
Pages : 119

Get Book Here

Book Description
Described in this dissertation are a range of methods for expanding the complexity of materials in the class of metal-organic frameworks (MOFs). From their discovery in the mid-1990's until today, metal-organic frameworks have largely been built from a narrow set of building blocks: symmetric, aromatic, carboxylates and first row transition or rare earth metals. While much work has been devoted to investigating the scope of their possible applications, more fundamental understanding of their chemistry is needed for the full potential of this class of materials to be realized. In addition to their crystallinity and porosity, the primary reason for the success of metal-organic frameworks in fields ranging from gas storage to catalysis stems from their inherent tunability. Metal-organic frameworks, in contrast to other porous materials such as zeolites, are modular in that they are built from discrete organic and inorganic components and can therefore be tailored to specific purposes. Increasing the attainable complexity of these materials allows for greater optimization toward existing applications and for exploring previously undiscovered areas. Complexity in solid-state materials is introduced through heterogeneity of composition or distribution. For metal-organic frameworks, this heterogeneity is manifested either in the backbone composing the underlying network or in the functionalities exposed to the pore space. Both approaches are investigated in this dissertation. Heterogeneity of the backbone rests in the diversity of the organic and inorganic building units. Heterogeneity of the pore space is provided by functionalization of organic and inorganic structural building units without altering their structural properties. Chapter One presents an introduction to rational design of metal-organic frameworks encompassing the context and background for this work. The building block approach provides control of metal-organic framework structure, stability, and functionality. Both inorganic and organic building units are available for modification. Variations in linker length, geometry, and connectivity correlate with changes in the extended structure. Choice of coordinating group is another element of control. Much remains to be investigated in terms of linkage type in metal-organic frameworks by exploring new coordinating groups. Concerning the metal components, the multifarious clusters and chains serving as secondary building units (SBUs) have implications for the structure, stability, and function of these materials. The identity of the metal ions comprising these secondary building units impacts these aspects as well. Heterogeneity of metal-organic framework backbones has been achieved in mixed linker and mixed metal systems. Strategies to achieve pure phases of materials with mixed components include synthesis from a mixture of starting materials as well as post-synthetic modification. Inside heterogeneous pore spaces, desired functionalities coordinate to the metals of the frameworks or are sidechains of the organic linkers. An analysis of the structure and property implications of constructing metal-organic frameworks from heterotopic linkers, meaning those linkers with non-identical coordinating groups, had not been reported. The lack of investigation in this area was the impetus for the research presented in Chapters Two and Three. Chapter Two describes the design, synthesis, and characterization of a heterotritopic linker for metal-organic frameworks. This compound bears a carboxylic acid, catechol, and pyridone and was not known in the literature. The original and optimized synthetic routes are given. The linker is synthesized reproducibly on gram scale in three steps with a single column chromatography purification. The analytical data for this linker are given, including the mass spectrometry, one-dimensional and two-dimensional nuclear magnetic resonance, and infrared spectra. The reasoning behind the choice of metrics and coordinating groups is described. Chapter Three details the synthesis, structure elucidation and refinement, and properties of a metal-organic framework constructed from a heterotritopic linker and zinc(II), termed MOF-910. Despite the asymmetry of the linker, MOF-910 is both highly crystalline and symmetric. Synthetic conditions for crystallization of the heterotritopic linker with zinc(II) required an added base, such as triethylamine. The material is highly porous with a Brunauer-Emmett-Teller surface area of 2,120 m2 g-1and hexagonal channels 21 Å in diameter. The material is remarkably thermally and chemically stable for a zinc-based metal-organic framework. Integrity of the framework is maintained up to 320 °C and under acidic and basic aqueous conditions. The catechol moiety undergoes oxidation to the corresponding semiquinone during the metal-organic framework synthesis. The electron paramagnetic resonance spectrum indicates a ligand-centered radical. Chapter Four concerns the applications and reticular chemistry insights uncovered by MOF-910. One focus is the prediction and control of structure of metal-organic frameworks through lower symmetry and heterotopic linkers. The process for reducing MOF-910 to its underlying topological network is explained. The tto (ttriangles. tetrahedra, octahedra) net, of which MOF-910 is the first representation, is described. The tendency of heterotopic linkers to form helical secondary building units is investigated. The dependence of helical pitch on the distance between the most proximal coordinating groups in asymmetric polytopic linkers is discussed. The contributions of these discoveries to the field of reticular chemistry are stated. The electrochromic and gas adsorption behavior of MOF-910 are described as well. Treatment with a mild oxidant converts colorless crystals to bright red with no change in structure discernible by single-crystal X-ray diffraction and no change in surface area. Exposure to a mild reductant causes red crystals to lose color. Chapter Five focuses on functionalization of metal-organic frameworks constructed from tetrakis(4-carboxyphenyl)porphyrin and zirconium(IV) clusters. The introduction of functionality through the organic ligand is described in MOF-525 and MOF-545. Since the porphyrin core is not involved in structure formation of these metal-organic frameworks, additional reactive sites were installed in these frameworks by coordination to the porphyrin pyrroles. The synthetic conditions for constructing zirconium(IV) metal-organic frameworks with porphyrin linkers bound to aluminum(III), chromium(III), manganese(III), iron(III), cobalt(III), nickel(II), copper(II), and zinc(II) are reported. The synthesis of the aluminum(III) and chromium(III) linkers is given. The activation conditions for these generally difficult to evacuate mesoporous materials are listed. The ability of these metalated porphyrin materials to capture toxic gases is reported.

Metal-Organic Frameworks for Biomedical Applications

Metal-Organic Frameworks for Biomedical Applications PDF Author: Masoud Mozafari
Publisher: Woodhead Publishing
ISBN: 0128169842
Category : Medical
Languages : en
Pages : 584

Get Book Here

Book Description
Metal-Organic Frameworks for Biomedical Applications is a comprehensive, authoritative reference that offers a substantial and complete treatment of published results that have yet to be critically reviewed. It offers a summary of current research and provides in-depth understanding of the role of metal-organic frameworks in biomedical engineering. The title consists of twenty-two chapters presented by leading international researchers in the field. Chapters are arranged by target-application in biomedical engineering, allowing medical and pharmaceutic specialists to translate current materials and engineering science on metal-organic frameworks into their work. Presents the state-of-the art in metal-organic frameworks for biomedical applications Offers comprehensive treatment of metal-organic frameworks that is useful to pharmaceutic and medical experts who are non-specialists in materials science Helps materials scientists and engineers understand the needs of biomedical engineering Critically-reviews published results and current research in the field

Metal Organic Frameworks

Metal Organic Frameworks PDF Author: Victoria Samanidou
Publisher: MDPI
ISBN: 303928486X
Category : Science
Languages : en
Pages : 198

Get Book Here

Book Description
Metal–organic frameworks are among the most promising novel materials. The concept of MOFs was first introduced in 1990. They were actually initially used in catalysis, gas separation, membranes, electrochemical sensors. Later on, they were introduced as SPE sorbents for PAHs (Polycyclic Aromatic Hydrocarbons) in environmental water samples, then the range expanded to the field of analytical chemistry, both in chromatographic separation and sample preparation, with great success in, e.g., SPE and SPME (Solid Phase Mico-extraction). Since then, the number of analytical applications implementing MOFs as sorbents in sorptive sample preparation approaches is increasing. Τhis is reinforced by the fact that, at least theoretically, an infinite number of structures can be designed and synthesized, thus making tuneability one of the most unique characteristics of MOF materials. Moreover, they have been designed in various shapes, such as columns, fibers, and films, so that they can meet more analytical challenges with improved analytical features.Their exceptional properties attracted the interest of analytical chemists who have taken advantage of the unique structures and properties and have already introduced them in several sample pretreatment techniques, such as solid phase extraction, dispersive SPE, magnetic solid phase extraction, solid phase microextraction, stir bar sorptive extraction, etc.

Metal-Organic Framework Composites

Metal-Organic Framework Composites PDF Author: Anish Khan
Publisher: Materials Research Forum LLC
ISBN: 1644900424
Category : Technology & Engineering
Languages : en
Pages : 426

Get Book Here

Book Description
Because of their nanoporous structures and ultra-high surface areas Metal-Organic Framework Composites (MOFs) are very interesting materials. The book focusses on the following applications: gas capture and storage, especially molecular hydrogen storage; performance enhancement of Li-ion batteries; gas separation, nano-filtration, ionic sieving, water treatment, and catalysis; sustainable renewable energy resources, electrochemical capacitors, including supercapacitors, asymmetric supercapacitors and hybrid supercapacitors; biomedical disciplines including drug delivery, theranostics; biological detection and imaging; nanoparticle photosensitizers for photodynamic therapy (PDT) and photothermal therapy (PTT). Keywords: MOF Materials, Hydrogen Storage, Renewable Energy Applications, Lithium Batteries, MOF-Quantum Dots, Clean Energy, Nanoporous MOFs, Supercapacitors, Therapeutic Applications, Biosensing, Bioimaging, Phototherapy of Cancer, Gas Separation, Nano-filtration, Ionic Sieving, Water Treatment, Drug Delivery, Theranostics; Nanoparticle Photosensitizers, Photodynamic Therapy (PDT), Photothermal Therapy (PTT).

Transition Metals-Based Metal-Organic Frameworks, Synthesis, and Environmental Applications

Transition Metals-Based Metal-Organic Frameworks, Synthesis, and Environmental Applications PDF Author: José María María Rivera
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 0

Get Book Here

Book Description
This work illustrates examples of metal-organic frameworks (MOFs) derived from transition metals and their environmental applications in areas of catalysis, sorption, and hydrogen evolution. Explanation of some of the techniques employed for their synthesis has been discussed. On the other hand, the advantages of the use of hybrid materials such as the metal-organic frameworks are exposed in this book as well a detailed description of the different linkers and metals used for the synthesis of this kind of porous materials going through the methodologies and techniques utilized by different authors to obtain good-quality crystalline applicable materials. Adjustments of linker geometry, length, ratio, and the functional group can tune the size, shape, and internal surface property of an MOF for a targeted application. The uses of MOFs are exploring new different areas of chemistry such as catalysis, adsorption, carrier systems, hydrogen evolution, photocatalysis, and more. Different examples of MOFs from Scandium to Zinc are well described in this book, and finally, a brief description of some common environmental applications such as metals and azo dyes sorption, hydrogen evolution, and catalyst in the transesterification process of vegetable oils to produce biodiesel is explored and commented.

Advanced Functional Metal-Organic Frameworks

Advanced Functional Metal-Organic Frameworks PDF Author: Jay Singh
Publisher: CRC Press
ISBN: 1000862844
Category : Science
Languages : en
Pages : 300

Get Book Here

Book Description
Due to the structural flexibility, large surface area, tailorable pore size and functional tenability, metal-organic frameworks (MOFs) can lead to materials with unique properties. This book covers the fundamental aspects of MOFs, their synthesis and modification, including their potential applications in different domains. The major focus is on applications including chemical, biosensors, catalysis, drug delivery, supercapacitors, energy storage, magnetics and their future perspectives. The volume: Covers all aspects related to metal-organic frameworks (MOFs), including characterization, modification, applications and associated challenges Illustrates designing and synthetic strategies for MOFs Describes MOFs for gas adsorption, separation and purification, and their role in heterogeneous catalysis Covers sensing of different types of noxious substances in the aqueous environment Includes concepts of molecular magnetism, tunable magnetic properties and future aspects This book is aimed at graduate students, and researchers in material science, coordination and industrial chemistry, chemical and environmental engineering and clean technologies.

Physicochemical Aspects of Metal-Organic Frameworks

Physicochemical Aspects of Metal-Organic Frameworks PDF Author: Ali Maleki
Publisher: Springer Nature
ISBN: 3031186753
Category : Technology & Engineering
Languages : en
Pages : 344

Get Book Here

Book Description
This book presents a both detailed and comprehensive look at metal–organic frameworks (MOFs), a relatively new class of materials with a broad application potential. The beginning chapters focus on introducing the requisite fundamental knowledge of MOFs with respect to their classification, synthesis, functionalization approaches, and various other physiochemical facets such as structural morphology and coordination chemistry. The remaining chapters cover an array of diverse applications, from areas such as energy storage and environmental remediation, to drug delivery, biosensing, and tissue engineering. Featuring chapters dedicated to the design of novel MOF structures, as well as theoretical calculations via density functional theory and machine learning techniques, this book targets a wide readership of both academic and industrial researchers interested in an in-depth understanding of the latest MOF structure–function relationships, as well as their deployment in a wide variety of coordinated engineering applications.