Author: W. Rudin
Publisher: Springer Science & Business Media
ISBN: 1461380987
Category : Mathematics
Languages : en
Pages : 449
Book Description
Around 1970, an abrupt change occurred in the study of holomorphic functions of several complex variables. Sheaves vanished into the back ground, and attention was focused on integral formulas and on the "hard analysis" problems that could be attacked with them: boundary behavior, complex-tangential phenomena, solutions of the J-problem with control over growth and smoothness, quantitative theorems about zero-varieties, and so on. The present book describes some of these developments in the simple setting of the unit ball of en. There are several reasons for choosing the ball for our principal stage. The ball is the prototype of two important classes of regions that have been studied in depth, namely the strictly pseudoconvex domains and the bounded symmetric ones. The presence of the second structure (i.e., the existence of a transitive group of automorphisms) makes it possible to develop the basic machinery with a minimum of fuss and bother. The principal ideas can be presented quite concretely and explicitly in the ball, and one can quickly arrive at specific theorems of obvious interest. Once one has seen these in this simple context, it should be much easier to learn the more complicated machinery (developed largely by Henkin and his co-workers) that extends them to arbitrary strictly pseudoconvex domains. In some parts of the book (for instance, in Chapters 14-16) it would, however, have been unnatural to confine our attention exclusively to the ball, and no significant simplifications would have resulted from such a restriction.
Function Theory in the Unit Ball of Cn
Author: W. Rudin
Publisher: Springer Science & Business Media
ISBN: 1461380987
Category : Mathematics
Languages : en
Pages : 449
Book Description
Around 1970, an abrupt change occurred in the study of holomorphic functions of several complex variables. Sheaves vanished into the back ground, and attention was focused on integral formulas and on the "hard analysis" problems that could be attacked with them: boundary behavior, complex-tangential phenomena, solutions of the J-problem with control over growth and smoothness, quantitative theorems about zero-varieties, and so on. The present book describes some of these developments in the simple setting of the unit ball of en. There are several reasons for choosing the ball for our principal stage. The ball is the prototype of two important classes of regions that have been studied in depth, namely the strictly pseudoconvex domains and the bounded symmetric ones. The presence of the second structure (i.e., the existence of a transitive group of automorphisms) makes it possible to develop the basic machinery with a minimum of fuss and bother. The principal ideas can be presented quite concretely and explicitly in the ball, and one can quickly arrive at specific theorems of obvious interest. Once one has seen these in this simple context, it should be much easier to learn the more complicated machinery (developed largely by Henkin and his co-workers) that extends them to arbitrary strictly pseudoconvex domains. In some parts of the book (for instance, in Chapters 14-16) it would, however, have been unnatural to confine our attention exclusively to the ball, and no significant simplifications would have resulted from such a restriction.
Publisher: Springer Science & Business Media
ISBN: 1461380987
Category : Mathematics
Languages : en
Pages : 449
Book Description
Around 1970, an abrupt change occurred in the study of holomorphic functions of several complex variables. Sheaves vanished into the back ground, and attention was focused on integral formulas and on the "hard analysis" problems that could be attacked with them: boundary behavior, complex-tangential phenomena, solutions of the J-problem with control over growth and smoothness, quantitative theorems about zero-varieties, and so on. The present book describes some of these developments in the simple setting of the unit ball of en. There are several reasons for choosing the ball for our principal stage. The ball is the prototype of two important classes of regions that have been studied in depth, namely the strictly pseudoconvex domains and the bounded symmetric ones. The presence of the second structure (i.e., the existence of a transitive group of automorphisms) makes it possible to develop the basic machinery with a minimum of fuss and bother. The principal ideas can be presented quite concretely and explicitly in the ball, and one can quickly arrive at specific theorems of obvious interest. Once one has seen these in this simple context, it should be much easier to learn the more complicated machinery (developed largely by Henkin and his co-workers) that extends them to arbitrary strictly pseudoconvex domains. In some parts of the book (for instance, in Chapters 14-16) it would, however, have been unnatural to confine our attention exclusively to the ball, and no significant simplifications would have resulted from such a restriction.
Geometric Function Theory in One and Higher Dimensions
Author: Ian Graham
Publisher: CRC Press
ISBN: 9780203911624
Category : Mathematics
Languages : en
Pages : 572
Book Description
This reference details valuable results that lead to improvements in existence theorems for the Loewner differential equation in higher dimensions, discusses the compactness of the analog of the Caratheodory class in several variables, and studies various classes of univalent mappings according to their geometrical definitions. It introduces the in
Publisher: CRC Press
ISBN: 9780203911624
Category : Mathematics
Languages : en
Pages : 572
Book Description
This reference details valuable results that lead to improvements in existence theorems for the Loewner differential equation in higher dimensions, discusses the compactness of the analog of the Caratheodory class in several variables, and studies various classes of univalent mappings according to their geometrical definitions. It introduces the in
Geometric Function Theory in Several Complex Variables
Author: Carl H. FitzGerald
Publisher: World Scientific
ISBN: 9789812702500
Category : Mathematics
Languages : en
Pages : 360
Book Description
The papers contained in this book address problems in one and several complex variables. The main theme is the extension of geometric function theory methods and theorems to several complex variables. The papers present various results on the growth of mappings in various classes as well as observations about the boundary behavior of mappings, via developing and using some semi group methods.
Publisher: World Scientific
ISBN: 9789812702500
Category : Mathematics
Languages : en
Pages : 360
Book Description
The papers contained in this book address problems in one and several complex variables. The main theme is the extension of geometric function theory methods and theorems to several complex variables. The papers present various results on the growth of mappings in various classes as well as observations about the boundary behavior of mappings, via developing and using some semi group methods.
Geometric Function Theory In Several Complex Variables, Proceedings Of A Satellite Conference To The Int'l Congress Of Mathematicians In Beijing 2002
Author: Sheng Gong
Publisher: World Scientific
ISBN: 9814481912
Category : Mathematics
Languages : en
Pages : 353
Book Description
The papers contained in this book address problems in one and several complex variables. The main theme is the extension of geometric function theory methods and theorems to several complex variables. The papers present various results on the growth of mappings in various classes as well as observations about the boundary behavior of mappings, via developing and using some semi group methods.
Publisher: World Scientific
ISBN: 9814481912
Category : Mathematics
Languages : en
Pages : 353
Book Description
The papers contained in this book address problems in one and several complex variables. The main theme is the extension of geometric function theory methods and theorems to several complex variables. The papers present various results on the growth of mappings in various classes as well as observations about the boundary behavior of mappings, via developing and using some semi group methods.
Introduction to Geometric Function Theory of Hypercomplex Variables
Author: Sorin G. Gal
Publisher: Nova Publishers
ISBN: 9781590333648
Category : Mathematics
Languages : en
Pages : 340
Book Description
Introduction to Geometric Function Theory of Hypercomplex Variables
Publisher: Nova Publishers
ISBN: 9781590333648
Category : Mathematics
Languages : en
Pages : 340
Book Description
Introduction to Geometric Function Theory of Hypercomplex Variables
Function Theory of Several Complex Variables
Author: Steven George Krantz
Publisher: American Mathematical Soc.
ISBN: 0821827243
Category : Mathematics
Languages : en
Pages : 586
Book Description
Emphasizing integral formulas, the geometric theory of pseudoconvexity, estimates, partial differential equations, approximation theory, inner functions, invariant metrics, and mapping theory, this title is intended for the student with a background in real and complex variable theory, harmonic analysis, and differential equations.
Publisher: American Mathematical Soc.
ISBN: 0821827243
Category : Mathematics
Languages : en
Pages : 586
Book Description
Emphasizing integral formulas, the geometric theory of pseudoconvexity, estimates, partial differential equations, approximation theory, inner functions, invariant metrics, and mapping theory, this title is intended for the student with a background in real and complex variable theory, harmonic analysis, and differential equations.
Analytic K-Homology
Author: Nigel Higson
Publisher: OUP Oxford
ISBN: 0191589209
Category : Mathematics
Languages : en
Pages : 426
Book Description
Analytic K-homology draws together ideas from algebraic topology, functional analysis and geometry. It is a tool - a means of conveying information among these three subjects - and it has been used with specacular success to discover remarkable theorems across a wide span of mathematics. The purpose of this book is to acquaint the reader with the essential ideas of analytic K-homology and develop some of its applications. It includes a detailed introduction to the necessary functional analysis, followed by an exploration of the connections between K-homology and operator theory, coarse geometry, index theory, and assembly maps, including a detailed treatment of the Atiyah-Singer Index Theorem. Beginning with the rudiments of C* - algebra theory, the book will lead the reader to some central notions of contemporary research in geometric functional analysis. Much of the material included here has never previously appeared in book form.
Publisher: OUP Oxford
ISBN: 0191589209
Category : Mathematics
Languages : en
Pages : 426
Book Description
Analytic K-homology draws together ideas from algebraic topology, functional analysis and geometry. It is a tool - a means of conveying information among these three subjects - and it has been used with specacular success to discover remarkable theorems across a wide span of mathematics. The purpose of this book is to acquaint the reader with the essential ideas of analytic K-homology and develop some of its applications. It includes a detailed introduction to the necessary functional analysis, followed by an exploration of the connections between K-homology and operator theory, coarse geometry, index theory, and assembly maps, including a detailed treatment of the Atiyah-Singer Index Theorem. Beginning with the rudiments of C* - algebra theory, the book will lead the reader to some central notions of contemporary research in geometric functional analysis. Much of the material included here has never previously appeared in book form.
Geometric Algebra for Physicists
Author: Chris Doran
Publisher: Cambridge University Press
ISBN: 1139643142
Category : Science
Languages : en
Pages : 647
Book Description
Geometric algebra is a powerful mathematical language with applications across a range of subjects in physics and engineering. This book is a complete guide to the current state of the subject with early chapters providing a self-contained introduction to geometric algebra. Topics covered include new techniques for handling rotations in arbitrary dimensions, and the links between rotations, bivectors and the structure of the Lie groups. Following chapters extend the concept of a complex analytic function theory to arbitrary dimensions, with applications in quantum theory and electromagnetism. Later chapters cover advanced topics such as non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored. It can be used as a graduate text for courses on the physical applications of geometric algebra and is also suitable for researchers working in the fields of relativity and quantum theory.
Publisher: Cambridge University Press
ISBN: 1139643142
Category : Science
Languages : en
Pages : 647
Book Description
Geometric algebra is a powerful mathematical language with applications across a range of subjects in physics and engineering. This book is a complete guide to the current state of the subject with early chapters providing a self-contained introduction to geometric algebra. Topics covered include new techniques for handling rotations in arbitrary dimensions, and the links between rotations, bivectors and the structure of the Lie groups. Following chapters extend the concept of a complex analytic function theory to arbitrary dimensions, with applications in quantum theory and electromagnetism. Later chapters cover advanced topics such as non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored. It can be used as a graduate text for courses on the physical applications of geometric algebra and is also suitable for researchers working in the fields of relativity and quantum theory.
Foundations of Free Noncommutative Function Theory
Author: Dmitry S. Kaliuzhnyi-Verbovetskyi
Publisher: American Mathematical Soc.
ISBN: 1470416972
Category : Mathematics
Languages : en
Pages : 194
Book Description
In this book the authors develop a theory of free noncommutative functions, in both algebraic and analytic settings. Such functions are defined as mappings from square matrices of all sizes over a module (in particular, a vector space) to square matrices over another module, which respect the size, direct sums, and similarities of matrices. Examples include, but are not limited to, noncommutative polynomials, power series, and rational expressions. Motivation and inspiration for using the theory of free noncommutative functions often comes from free probability. An important application area is "dimensionless" matrix inequalities; these arise, e.g., in various optimization problems of system engineering. Among other related areas are those of polynomial identities in rings, formal languages and finite automata, quasideterminants, noncommutative symmetric functions, operator spaces and operator algebras, and quantum control.
Publisher: American Mathematical Soc.
ISBN: 1470416972
Category : Mathematics
Languages : en
Pages : 194
Book Description
In this book the authors develop a theory of free noncommutative functions, in both algebraic and analytic settings. Such functions are defined as mappings from square matrices of all sizes over a module (in particular, a vector space) to square matrices over another module, which respect the size, direct sums, and similarities of matrices. Examples include, but are not limited to, noncommutative polynomials, power series, and rational expressions. Motivation and inspiration for using the theory of free noncommutative functions often comes from free probability. An important application area is "dimensionless" matrix inequalities; these arise, e.g., in various optimization problems of system engineering. Among other related areas are those of polynomial identities in rings, formal languages and finite automata, quasideterminants, noncommutative symmetric functions, operator spaces and operator algebras, and quantum control.
Handbook of Complex Analysis
Author: Reiner Kuhnau
Publisher: Elsevier
ISBN: 0080495176
Category : Mathematics
Languages : en
Pages : 876
Book Description
Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings. Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem. There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane). · A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).
Publisher: Elsevier
ISBN: 0080495176
Category : Mathematics
Languages : en
Pages : 876
Book Description
Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings. Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem. There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane). · A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).