Fuel-Flexible Gasification-Combustion Technology for Production of Hydrogen and Sequestration-Ready Carbon Dioxide

Fuel-Flexible Gasification-Combustion Technology for Production of Hydrogen and Sequestration-Ready Carbon Dioxide PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
Electricity produced from hydrogen in fuel cells can be highly efficient relative to competing technologies and has the potential to be virtually pollution free. Thus, fuel cells may become an ideal solution to this nation's energy needs if one has a satisfactory process for producing hydrogen from available energy resources such as coal, and low-cost alternative feedstocks such as biomass. GE EER is developing an innovative fuel-flexible advanced gasification-combustion (AGC) technology for production of hydrogen for fuel cells or combustion turbines, and a separate stream of sequestration-ready CO2. The AGC module can be integrated into a number of Vision- 21 power systems. It offers increased energy efficiency relative to conventional gasification and combustion systems and near-zero pollution. The R & D on the AGC technology is being conducted under a Vision-21 award from the U.S. DOE NETL with co-funding from GE EER, Southern Illinois University at Carbondale (SIU-C), and the California Energy Commission (CEC). The AGC technology converts coal and air into three separate streams of pure hydrogen, sequestration-ready CO2, and high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The three-year program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. Process and kinetic modeling studies as well as an economic assessment will also be performed. This paper provides an overview of the program and its objectives, and discusses first-year R & D activities, including design of experimental facilities and results from initial tests and modeling studies. In particular, the paper describes the design of the bench-scale facility and initial process modeling data. In addition, a process flow diagram is shown for a complete plant incorporating the AGC module with other Vision-21 plant components to maximize hydrogen production and process efficiency.

Fuel-Flexible Gasification-Combustion Technology for Production of Hydrogen and Sequestration-Ready Carbon Dioxide

Fuel-Flexible Gasification-Combustion Technology for Production of Hydrogen and Sequestration-Ready Carbon Dioxide PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
Electricity produced from hydrogen in fuel cells can be highly efficient relative to competing technologies and has the potential to be virtually pollution free. Thus, fuel cells may become an ideal solution to this nation's energy needs if one has a satisfactory process for producing hydrogen from available energy resources such as coal, and low-cost alternative feedstocks such as biomass. GE EER is developing an innovative fuel-flexible advanced gasification-combustion (AGC) technology for production of hydrogen for fuel cells or combustion turbines, and a separate stream of sequestration-ready CO2. The AGC module can be integrated into a number of Vision- 21 power systems. It offers increased energy efficiency relative to conventional gasification and combustion systems and near-zero pollution. The R & D on the AGC technology is being conducted under a Vision-21 award from the U.S. DOE NETL with co-funding from GE EER, Southern Illinois University at Carbondale (SIU-C), and the California Energy Commission (CEC). The AGC technology converts coal and air into three separate streams of pure hydrogen, sequestration-ready CO2, and high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The three-year program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. Process and kinetic modeling studies as well as an economic assessment will also be performed. This paper provides an overview of the program and its objectives, and discusses first-year R & D activities, including design of experimental facilities and results from initial tests and modeling studies. In particular, the paper describes the design of the bench-scale facility and initial process modeling data. In addition, a process flow diagram is shown for a complete plant incorporating the AGC module with other Vision-21 plant components to maximize hydrogen production and process efficiency.

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H2, power, and sequestration-ready CO2 from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO(subscript x). GE was awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO2, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R & D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO2 and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs will be benchmarked with IGCC polygen costs for plants of similar size. Sorbent attrition and lifetime will be addressed via bench-scale experiments that monitor sorbent performance over time and by assessing materials interactions at operating conditions. The product gas from the third reactor (high-temperature vitiated air) will be evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. This is the eighteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the Phase II period starting July 01, 2005 and ending September 30, 2005. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including process modeling, scale-up and economic analysis.

Hydrogen Fuel

Hydrogen Fuel PDF Author: Ram B. Gupta
Publisher: CRC Press
ISBN: 1420045776
Category : Science
Languages : en
Pages : 626

Get Book Here

Book Description
From Methane to Hydrogen-Making the Switch to a Cleaner Fuel Source The world's overdependence on fossil fuels has created environmental problems, such as air pollution and global warming, as well as political and economic unrest. With water as its only by-product and its availability in all parts of the world, hydrogen promises to be the next grea

Hydrogen and Syngas Production and Purification Technologies

Hydrogen and Syngas Production and Purification Technologies PDF Author: Ke Liu
Publisher: John Wiley & Sons
ISBN: 0471719757
Category : Technology & Engineering
Languages : en
Pages : 572

Get Book Here

Book Description
Covers the timely topic of fuel cells and hydrogen-based energy from its fundamentals to practical applications Serves as a resource for practicing researchers and as a text in graduate-level programs Tackles crucial aspects in light of the new directions in the energy industry, in particular how to integrate fuel processing into contemporary systems like nuclear and gas power plants Includes homework-style problems

Generating Electricity in a Carbon-Constrained World

Generating Electricity in a Carbon-Constrained World PDF Author: Fereidoon Sioshansi
Publisher: Academic Press
ISBN: 0080889719
Category : Technology & Engineering
Languages : en
Pages : 633

Get Book Here

Book Description
The electric power sector is what keeps modern economies going, and historically, fossil fuels provided the bulk of the energy need to generate electricity, with coal a dominant player in many parts of the world. Now with growing concerns about global climate change, this historical dependence on fossil-fuels, especially those rich in carbon, are being questioned. Examining the implications of the industry's future in a carbon-constrained world, a distinct reality, is the subject of this book. Containing contributions from renowned scholars and academics from around the world, this book explores the various energy production options available to power companies in a carbon-constrained world. The three part treatment starts with a clear and rigorous exposition of the short term options including Clean Coal and Carbon Capture and Sequestration Technology, Coal, and Emission trading. Renewable energy options such as Nuclear Energy, Wind power, Solar power, Hydro-electric, and Geothermal energy are clearly explained along with their trade-offs and uncertainties inherent in evaluating and choosing different energy options and provides a framework for assessing policy solutions. This is followed by self-contained chapters of case-studies from all over the world. Other topics discussed in the book are Creating markets for tradable permits in the emerging carbon era, Global Action on Climate Change, The Impossibility of Staunching World CO2 Emissions and Energy efficiency. - Clearly explains short term and long term options - Contributions from renowned scholars and academics from around the world - Case-studies from all over the world

Hydrogen Production Technologies

Hydrogen Production Technologies PDF Author: Mehmet Sankir
Publisher: John Wiley & Sons
ISBN: 1119283655
Category : Science
Languages : en
Pages : 653

Get Book Here

Book Description
Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.

From Coal to Hydrogen

From Coal to Hydrogen PDF Author: Qianlin Zhuang
Publisher: Springer Nature
ISBN: 3031555864
Category :
Languages : en
Pages : 247

Get Book Here

Book Description


Chemical Looping Systems for Fossil Energy Conversions

Chemical Looping Systems for Fossil Energy Conversions PDF Author: Liang-Shih Fan
Publisher: John Wiley & Sons
ISBN: 1118063139
Category : Technology & Engineering
Languages : en
Pages : 353

Get Book Here

Book Description
This book presents the current carbonaceous fuel conversion technologies based on chemical looping concepts in the context of traditional or conventional technologies. The key features of the chemical looping processes, their ability to generate a sequestration-ready CO2 stream, are thoroughly discussed. Chapter 2 is devoted entirely to the performance of particles in chemical looping technology and covers the subjects of solid particle design, synthesis, properties, and reactive characteristics. The looping processes can be applied for combustion and/or gasification of carbon-based material such as coal, natural gas, petroleum coke, and biomass directly or indirectly for steam, syngas, hydrogen, chemicals, electricity, and liquid fuels production. Details of the energy conversion efficiency and the economics of these looping processes for combustion and gasification applications in contrast to those of the conventional processes are given in Chapters 3, 4, and 5.Finally, Chapter 6 presents additional chemical looping applications that are potentially beneficial, including those for H2 storage and onboard H2 production, CO2 capture in combustion flue gas, power generation using fuel cell, steam-methane reforming, tar sand digestion, and chemicals and liquid fuel production. A CD is appended to this book that contains the chemical looping simulation files and the simulation results based on the ASPEN Plus software for such reactors as gasifier, reducer, oxidizer and combustor, and for such processes as conventional gasification processes, Syngas Chemical Looping Process, Calcium Looping Process, and Carbonation-Calcination Reaction (CCR) Process. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.

Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture

Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture PDF Author: L Zheng
Publisher: Elsevier
ISBN: 0857090984
Category : Technology & Engineering
Languages : en
Pages : 397

Get Book Here

Book Description
Oxy-fuel combustion is currently considered to be one of the major technologies for carbon dioxide (CO2) capture in power plants. The advantages of using oxygen (O2) instead of air for combustion include a CO2-enriched flue gas that is ready for sequestration following purification and low NOx emissions. This simple and elegant technology has attracted considerable attention since the late 1990s, rapidly developing from pilot-scale testing to industrial demonstration. Challenges remain, as O2 supply and CO2 capture create significant energy penalties that must be reduced through overall system optimisation and the development of new processes.Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture comprehensively reviews the fundamental principles and development of oxy-fuel combustion in fossil-fuel fired utility boilers. Following a foreword by Professor János M. Beér, the book opens with an overview of oxy-fuel combustion technology and its role in a carbon-constrained environment. Part one introduces oxy-fuel combustion further, with a chapter comparing the economics of oxy-fuel vs. post-/pre-combustion CO2 capture, followed by chapters on plant operation, industrial scale demonstrations, and circulating fluidized bed combustion. Part two critically reviews oxy-fuel combustion fundamentals, such as ignition and flame stability, burner design, emissions and heat transfer characteristics, concluding with chapters on O2 production and CO2 compression and purification technologies. Finally, part three explores advanced concepts and developments, such as near-zero flue gas recycle and high-pressure systems, as well as chemical looping combustion and utilisation of gaseous fuel.With its distinguished editor and internationally renowned contributors, Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture provides a rich resource for power plant designers, operators, and engineers, as well as academics and researchers in the field. - Comprehensively reviews the fundamental principles and development of oxy-fuel combustion in fossil-fuel fired utility boilers - Provides an overview of oxy-fuel combustion technology and its role in a carbon-constrained environment - Introduces oxy-fuel combustion comparing the economics of oxy-fuel vs. post-/pre-combustion CO2 capture

SIMULTANEOUS PRODUCTION OF HIGH-PURITY HYDROGEN AND SEQUESTRATION-READY CO2 FROM SYNGAS.

SIMULTANEOUS PRODUCTION OF HIGH-PURITY HYDROGEN AND SEQUESTRATION-READY CO2 FROM SYNGAS. PDF Author: Vladimir Zamansky
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
This final report summarizes the progress made on the program ''Simultaneous Production of High-Purity Hydrogen and Sequestration-Ready CO{sub 2} from Syngas (contract number DE-FG26-99FT40682)'', during October 2000 through September of 2003. GE Energy and Environmental Research (GE-EER) and Southern Illinois University (SIU) at Carbondale conducted the research work for this program. This program addresses improved methods to efficiently produce simultaneous streams of high-purity hydrogen and separated carbon dioxide from synthesis gas (syngas). The syngas may be produced through either gasification of coal or reforming of natural gas. The process of production of H{sub 2} and separated CO{sub 2} utilizes a dual-bed reactor and regenerator system. The reactor produces hydrogen and the regenerator produces separated CO{sub 2}. The dual-bed system can be operated under either a circulating fluidized-bed configuration or a cyclic fixed-bed configuration. Both configurations were evaluated in this project. The experimental effort was divided into lab-scale work at SIU and bench-scale work at GE-EER. Tests in a lab-scale fluidized bed system demonstrated the process for the conversion of syngas to high purity H{sub 2} and separated CO{sub 2}. The lab-scale system generated up to 95% H{sub 2} (on a dry basis). Extensive thermodynamic analysis of chemical reactions between the syngas and the fluidized solids determined an optimum range of temperature and pressure operation, where the extent of the undesirable reactions is minimum. The cycling of the process between hydrogen generation and oxygen regeneration has been demonstrated. The fluidized solids did not regenerate completely and the hydrogen purity in the reuse cycle dropped to 70% from 95% (on a dry basis). Changes in morphology and particle size may be the most dominant factor affecting the efficiency of the repeated cycling between hydrogen production and oxygen regeneration. The concept of simultaneous production of hydrogen and separated stream of CO{sub 2} was proved using a fixed bed 2 reactor system at GE-EER. This bench-scale cyclic fixed-bed reactor system designed to reform natural gas to syngas has been fabricated in another coordinated DOE project. This system was modified to reform natural gas to syngas and then convert syngas to H{sub 2} and separated CO{sub 2}. The system produced 85% hydrogen (dry basis).