Author: Victor A. Karachevtsev
Publisher: CRC Press
ISBN: 9814613975
Category : Medical
Languages : en
Pages : 428
Book Description
Nanobiophysics is a new branch of science that operates at the interface of physics, biology, chemistry, material science, nanotechnology, and medicine. This book is the first one devoted to nanobiophysics and introduces this field with a focus on some selected topics related to the physics of biomolecular nanosystems, including nucleosomal DNA and
Nanobiophysics
Author: Victor A. Karachevtsev
Publisher: CRC Press
ISBN: 9814613975
Category : Medical
Languages : en
Pages : 428
Book Description
Nanobiophysics is a new branch of science that operates at the interface of physics, biology, chemistry, material science, nanotechnology, and medicine. This book is the first one devoted to nanobiophysics and introduces this field with a focus on some selected topics related to the physics of biomolecular nanosystems, including nucleosomal DNA and
Publisher: CRC Press
ISBN: 9814613975
Category : Medical
Languages : en
Pages : 428
Book Description
Nanobiophysics is a new branch of science that operates at the interface of physics, biology, chemistry, material science, nanotechnology, and medicine. This book is the first one devoted to nanobiophysics and introduces this field with a focus on some selected topics related to the physics of biomolecular nanosystems, including nucleosomal DNA and
Molecular and Laser Spectroscopy
Author: V.P. Gupta
Publisher: Elsevier
ISBN: 012849882X
Category : Science
Languages : en
Pages : 364
Book Description
Molecular and Laser Spectroscopy: Advances and Applications provides students and researchers with an up-to-date understanding of the fast-developing area of molecular and laser spectroscopy. Editor V.P. Gupta has brought together the eminent scientists on a selection of topics to develop a systematic approach, first covering basic principles needed to understand each cutting-edge technique and application. This book acts as a standard reference for advanced students of molecular and laser spectroscopy and as a graduate text for new entrants in the field. The book covers a wide range of applications of molecular and laser spectroscopy in diverse areas ranging from materials to medicine and defence, biomedical research, environmental monitoring, forensic investigations, food and agriculture, and chemical, pharmaceutical and petrochemical processes. Researchers and scientific personnel in these fields will learn the latest techniques in order to put them to practical use in their work. - Covers several areas of spectroscopy research in a single volume, saving researchers time - Includes exhaustive lists of research articles, reviews and books at the end of each chapter to point readers in the right direction for further learning - Features illustrative examples of the varied applications - Serves as a practical guide to those interested in using molecular and laser spectroscopy tools in their research and field applications
Publisher: Elsevier
ISBN: 012849882X
Category : Science
Languages : en
Pages : 364
Book Description
Molecular and Laser Spectroscopy: Advances and Applications provides students and researchers with an up-to-date understanding of the fast-developing area of molecular and laser spectroscopy. Editor V.P. Gupta has brought together the eminent scientists on a selection of topics to develop a systematic approach, first covering basic principles needed to understand each cutting-edge technique and application. This book acts as a standard reference for advanced students of molecular and laser spectroscopy and as a graduate text for new entrants in the field. The book covers a wide range of applications of molecular and laser spectroscopy in diverse areas ranging from materials to medicine and defence, biomedical research, environmental monitoring, forensic investigations, food and agriculture, and chemical, pharmaceutical and petrochemical processes. Researchers and scientific personnel in these fields will learn the latest techniques in order to put them to practical use in their work. - Covers several areas of spectroscopy research in a single volume, saving researchers time - Includes exhaustive lists of research articles, reviews and books at the end of each chapter to point readers in the right direction for further learning - Features illustrative examples of the varied applications - Serves as a practical guide to those interested in using molecular and laser spectroscopy tools in their research and field applications
Ab Initio Molecular Dynamics
Author: Dominik Marx
Publisher: Cambridge University Press
ISBN: 1139477196
Category : Science
Languages : en
Pages : 503
Book Description
Ab initio molecular dynamics revolutionized the field of realistic computer simulation of complex molecular systems and processes, including chemical reactions, by unifying molecular dynamics and electronic structure theory. This book provides the first coherent presentation of this rapidly growing field, covering a vast range of methods and their applications, from basic theory to advanced methods. This fascinating text for graduate students and researchers contains systematic derivations of various ab initio molecular dynamics techniques to enable readers to understand and assess the merits and drawbacks of commonly used methods. It also discusses the special features of the widely used Car–Parrinello approach, correcting various misconceptions currently found in research literature. The book contains pseudo-code and program layout for typical plane wave electronic structure codes, allowing newcomers to the field to understand commonly used program packages and enabling developers to improve and add new features in their code.
Publisher: Cambridge University Press
ISBN: 1139477196
Category : Science
Languages : en
Pages : 503
Book Description
Ab initio molecular dynamics revolutionized the field of realistic computer simulation of complex molecular systems and processes, including chemical reactions, by unifying molecular dynamics and electronic structure theory. This book provides the first coherent presentation of this rapidly growing field, covering a vast range of methods and their applications, from basic theory to advanced methods. This fascinating text for graduate students and researchers contains systematic derivations of various ab initio molecular dynamics techniques to enable readers to understand and assess the merits and drawbacks of commonly used methods. It also discusses the special features of the widely used Car–Parrinello approach, correcting various misconceptions currently found in research literature. The book contains pseudo-code and program layout for typical plane wave electronic structure codes, allowing newcomers to the field to understand commonly used program packages and enabling developers to improve and add new features in their code.
Kinetics and Dynamics
Author: Piotr Paneth
Publisher: Springer Science & Business Media
ISBN: 9048130344
Category : Science
Languages : en
Pages : 538
Book Description
"Kinetics and Dynamics" on molecular modeling of dynamic processes opens with an introductory overview before discussing approaches to reactivity of small systems in the gas phase. Then it examines studies of systems of increasing complexity up to the dynamics of DNA. This title has interdisciplinary character presenting wherever possible an interplay between the theory and the experiment. It provides basic information as well as the details of theory and examples of its application to experimentalists and theoreticians interested in modeling of dynamic processes in chemical and biochemical systems. All contributing authors are renowned experts in their fields and topics covered in this volume represent the forefront of today’s science.
Publisher: Springer Science & Business Media
ISBN: 9048130344
Category : Science
Languages : en
Pages : 538
Book Description
"Kinetics and Dynamics" on molecular modeling of dynamic processes opens with an introductory overview before discussing approaches to reactivity of small systems in the gas phase. Then it examines studies of systems of increasing complexity up to the dynamics of DNA. This title has interdisciplinary character presenting wherever possible an interplay between the theory and the experiment. It provides basic information as well as the details of theory and examples of its application to experimentalists and theoreticians interested in modeling of dynamic processes in chemical and biochemical systems. All contributing authors are renowned experts in their fields and topics covered in this volume represent the forefront of today’s science.
Chemical Abstracts
Author:
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 2668
Book Description
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 2668
Book Description
Applications of EPR in Radiation Research
Author: Anders Lund
Publisher: Springer
ISBN: 3319092162
Category : Science
Languages : en
Pages : 766
Book Description
Applications of EPR in Radiation Research is a multi-author contributed volume presented in eight themes: I. Elementary radiation processes (in situ and low temperature radiolysis, quantum solids); II: Solid state radiation chemistry (crystalline, amorphous and heterogeneous systems); III: Biochemistry, biophysics and biology applications (radicals in biomaterials, spin trapping, free-radical-induced DNA damage); IV: Materials science (polymeric and electronic materials, materials for treatment of nuclear waste, irradiated food); V: Radiation metrology (EPR-dosimetry, retrospective and medical applications); VI: Geological dating; VII: Advanced techniques (PELDOR, ESE and ENDOR spectroscopy, matrix isolation); VIII: Theoretical tools (density-functional calculations, spectrum simulations).
Publisher: Springer
ISBN: 3319092162
Category : Science
Languages : en
Pages : 766
Book Description
Applications of EPR in Radiation Research is a multi-author contributed volume presented in eight themes: I. Elementary radiation processes (in situ and low temperature radiolysis, quantum solids); II: Solid state radiation chemistry (crystalline, amorphous and heterogeneous systems); III: Biochemistry, biophysics and biology applications (radicals in biomaterials, spin trapping, free-radical-induced DNA damage); IV: Materials science (polymeric and electronic materials, materials for treatment of nuclear waste, irradiated food); V: Radiation metrology (EPR-dosimetry, retrospective and medical applications); VI: Geological dating; VII: Advanced techniques (PELDOR, ESE and ENDOR spectroscopy, matrix isolation); VIII: Theoretical tools (density-functional calculations, spectrum simulations).
Noncovalent Forces
Author: Steve Scheiner
Publisher: Springer
ISBN: 3319141635
Category : Science
Languages : en
Pages : 528
Book Description
Computational methods, and in particular quantum chemistry, have taken the lead in our growing understanding of noncovalent forces, as well as in their categorization. This volume describes the current state of the art in terms of what we now know, and the current questions requiring answers in the future. Topics range from very strong (ionic) to very weak (CH--π) interactions. In the intermediate regime, forces to be considered are H-bonds, particularly CH--O and OH--metal, halogen, chalcogen, pnicogen and tetrel bonds, aromatic stacking, dihydrogen bonds, and those involving radicals. Applications include drug development and predictions of crystal structure.
Publisher: Springer
ISBN: 3319141635
Category : Science
Languages : en
Pages : 528
Book Description
Computational methods, and in particular quantum chemistry, have taken the lead in our growing understanding of noncovalent forces, as well as in their categorization. This volume describes the current state of the art in terms of what we now know, and the current questions requiring answers in the future. Topics range from very strong (ionic) to very weak (CH--π) interactions. In the intermediate regime, forces to be considered are H-bonds, particularly CH--O and OH--metal, halogen, chalcogen, pnicogen and tetrel bonds, aromatic stacking, dihydrogen bonds, and those involving radicals. Applications include drug development and predictions of crystal structure.
Molecular Theory of Solvation
Author: F. Hirata
Publisher: Springer Science & Business Media
ISBN: 1402025904
Category : Science
Languages : en
Pages : 366
Book Description
Molecular Theory of Solvation presents the recent progress in the statistical mechanics of molecular liquids applied to the most intriguing problems in chemistry today, including chemical reactions, conformational stability of biomolecules, ion hydration, and electrode-solution interface. The continuum model of "solvation" has played a dominant role in describing chemical processes in solution during the last century. This book discards and replaces it completely with molecular theory taking proper account of chemical specificity of solvent. The main machinery employed here is the reference-interaction-site-model (RISM) theory, which is combined with other tools in theoretical chemistry and physics: the ab initio and density functional theories in quantum chemistry, the generalized Langevin theory, and the molecular simulation techniques. This book will be of benefit to graduate students and industrial scientists who are struggling to find a better way of accounting and/or predicting "solvation" properties.
Publisher: Springer Science & Business Media
ISBN: 1402025904
Category : Science
Languages : en
Pages : 366
Book Description
Molecular Theory of Solvation presents the recent progress in the statistical mechanics of molecular liquids applied to the most intriguing problems in chemistry today, including chemical reactions, conformational stability of biomolecules, ion hydration, and electrode-solution interface. The continuum model of "solvation" has played a dominant role in describing chemical processes in solution during the last century. This book discards and replaces it completely with molecular theory taking proper account of chemical specificity of solvent. The main machinery employed here is the reference-interaction-site-model (RISM) theory, which is combined with other tools in theoretical chemistry and physics: the ab initio and density functional theories in quantum chemistry, the generalized Langevin theory, and the molecular simulation techniques. This book will be of benefit to graduate students and industrial scientists who are struggling to find a better way of accounting and/or predicting "solvation" properties.
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 884
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 884
Book Description
Hydrogen Bonding
Author: Steve Scheiner
Publisher: Oxford University Press
ISBN: 0198025092
Category : Science
Languages : en
Pages : 396
Book Description
Because of the importance of the hydrogen bond, there have been scores of insights gained about its fundamental nature by quantum chemical computations over the years. Such methods can probe subtle characteristics of the electronic structure and examine regions of the potential energy surface that are simply not accessible by experimental means. The maturation of the techniques, codes, and computer hardware have permitted calculations of unprecedented reliability and rivaling the accuracy of experimental data. This book strives first toward an appreciation of the power of quantum chemistry to analyze the deepest roots of the hydrogen bond phenomenon. It offers a systematic and understandable account of decades of such calculations, focusing on the most important findings. This book provides readers with the tools to understand the original literature, and to perhaps carry out some calculations of their very own on systems of interest.
Publisher: Oxford University Press
ISBN: 0198025092
Category : Science
Languages : en
Pages : 396
Book Description
Because of the importance of the hydrogen bond, there have been scores of insights gained about its fundamental nature by quantum chemical computations over the years. Such methods can probe subtle characteristics of the electronic structure and examine regions of the potential energy surface that are simply not accessible by experimental means. The maturation of the techniques, codes, and computer hardware have permitted calculations of unprecedented reliability and rivaling the accuracy of experimental data. This book strives first toward an appreciation of the power of quantum chemistry to analyze the deepest roots of the hydrogen bond phenomenon. It offers a systematic and understandable account of decades of such calculations, focusing on the most important findings. This book provides readers with the tools to understand the original literature, and to perhaps carry out some calculations of their very own on systems of interest.