Author: Cynthia M. Otto
Publisher: Frontiers Media SA
ISBN: 2889636348
Category :
Languages : en
Pages : 93
Book Description
Canine Olfactory Detection
Author: Cynthia M. Otto
Publisher: Frontiers Media SA
ISBN: 2889636348
Category :
Languages : en
Pages : 93
Book Description
Publisher: Frontiers Media SA
ISBN: 2889636348
Category :
Languages : en
Pages : 93
Book Description
Frontiers in Biological Detection
Author: Amos Daniell
Publisher:
ISBN: 9781510632806
Category : Biosensors
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9781510632806
Category : Biosensors
Languages : en
Pages : 0
Book Description
Multi-Omics Technologies for Optimizing Synthetic Biomanufacturing
Author: Young-Mo Kim
Publisher: Frontiers Media SA
ISBN: 2889742377
Category : Science
Languages : en
Pages : 165
Book Description
Publisher: Frontiers Media SA
ISBN: 2889742377
Category : Science
Languages : en
Pages : 165
Book Description
AI in Biological and Biomedical Imaging
Author: Xin Gao
Publisher: Frontiers Media SA
ISBN: 2889740498
Category : Science
Languages : en
Pages : 161
Book Description
Doctors Gao and Li hold patents related to artificial intelligence.
Publisher: Frontiers Media SA
ISBN: 2889740498
Category : Science
Languages : en
Pages : 161
Book Description
Doctors Gao and Li hold patents related to artificial intelligence.
Frontiers in Biological Detection
Author: Amos Danielli
Publisher:
ISBN:
Category : Electronic book
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Electronic book
Languages : en
Pages :
Book Description
Bio-inspired Audio Processing, Models and Systems
Author: Shih-Chii Liu
Publisher: Frontiers Media SA
ISBN: 2889632326
Category :
Languages : en
Pages : 200
Book Description
Neurophysiology and biology provide useful starting points to help us understand and build better audio processing systems. The papers in this special issue address hardware implementations, spiking networks, sound identification, and attention decoding.
Publisher: Frontiers Media SA
ISBN: 2889632326
Category :
Languages : en
Pages : 200
Book Description
Neurophysiology and biology provide useful starting points to help us understand and build better audio processing systems. The papers in this special issue address hardware implementations, spiking networks, sound identification, and attention decoding.
The Life Sciences
Author:
Publisher: National Academies
ISBN:
Category : Science
Languages : en
Pages : 552
Book Description
Publisher: National Academies
ISBN:
Category : Science
Languages : en
Pages : 552
Book Description
Nanobiotechnology
Author:
Publisher: Elsevier
ISBN: 0123983045
Category : Science
Languages : en
Pages : 541
Book Description
Nanotechnology is considered the next big revolution in medicine and biology. For the past 20 years, research groups have been involved in the development of new applications of novel nanomaterials for biotechnological applications. Nanomaterials are also becoming increasingly important in medical applications, with new drugs and diagnostic tools based on nanotechnology. Every year, hundreds of new ideas using nanomaterials are applied in the development of biosensors. An increasing number of new enterprises are also searching for market opportunities using these technologies.Nanomaterials for biotechnological applications is a very complex field. Thousands of different nanoparticles could potentially be used for these purposes. Some of them are very different; their synthesis, characterization and potentiality are very diverse. This book aims to establish a route guide for non-erudite researchers in the field, showing the advantages and disadvantages of the different kind of nanomaterials. Particular attention is given to the differences, advantages and disadvantages of inorganic nanoparticles versus organic nanoparticles when used for biotechnological applications. A tutorial introduction provides the basis for understanding the subsequent specialized chapters. - Provides an overview of the main advantages and disadvantages of the use of organic and inorganic nanoparticles for use in biotechnology and nanomedicine - Provides an excellent starting point for research groups looking for solutions in nanotechnology who do not know which kind of materials will best suit their needs - Includes a tutorial introduction that provides a basis for understanding the subsequent specialized chapters
Publisher: Elsevier
ISBN: 0123983045
Category : Science
Languages : en
Pages : 541
Book Description
Nanotechnology is considered the next big revolution in medicine and biology. For the past 20 years, research groups have been involved in the development of new applications of novel nanomaterials for biotechnological applications. Nanomaterials are also becoming increasingly important in medical applications, with new drugs and diagnostic tools based on nanotechnology. Every year, hundreds of new ideas using nanomaterials are applied in the development of biosensors. An increasing number of new enterprises are also searching for market opportunities using these technologies.Nanomaterials for biotechnological applications is a very complex field. Thousands of different nanoparticles could potentially be used for these purposes. Some of them are very different; their synthesis, characterization and potentiality are very diverse. This book aims to establish a route guide for non-erudite researchers in the field, showing the advantages and disadvantages of the different kind of nanomaterials. Particular attention is given to the differences, advantages and disadvantages of inorganic nanoparticles versus organic nanoparticles when used for biotechnological applications. A tutorial introduction provides the basis for understanding the subsequent specialized chapters. - Provides an overview of the main advantages and disadvantages of the use of organic and inorganic nanoparticles for use in biotechnology and nanomedicine - Provides an excellent starting point for research groups looking for solutions in nanotechnology who do not know which kind of materials will best suit their needs - Includes a tutorial introduction that provides a basis for understanding the subsequent specialized chapters
Frontiers of Molecular Spectroscopy
Author: Jaan Laane
Publisher: Elsevier
ISBN: 0080932371
Category : Science
Languages : en
Pages : 741
Book Description
Much of what we know about atoms, molecules, and the nature of matter has been obtained using spectroscopy over the last one hundred years or so. In this book we have collected together twenty chapters by eminent scientists from around the world to describe their work at the cutting edge of molecular spectroscopy. These chapters describe new methodology and applications, instrumental developments, and theory which is taking spectroscopy into new frontiers. The range of topics is broad. Lasers are utilized in much of the research, but their applications range from sub-femtosecond spectroscopy to the study of viruses and also to the investigation of art and archeological artifacts. Three chapters discuss work on biological systems and three others represent laser physics. The recent advances in cavity ringdown spectroscopy (CRDS), surface enhanced Raman spectroscopy (SERS), two-dimensional correlation spectroscopy (2D-COS), and microwave techniques are all covered. Chapters on electronic excited states, molecular dynamics, symmetry applications, and neutron scattering are also included and demonstrate the wide utility of spectroscopic techniques. - Provides comprehensive coverage of present spectroscopic investigations - Features 20 chapters written by leading researchers in the field - Covers the important role of molecular spectroscopy in research concerned with chemistry, physics, and biology
Publisher: Elsevier
ISBN: 0080932371
Category : Science
Languages : en
Pages : 741
Book Description
Much of what we know about atoms, molecules, and the nature of matter has been obtained using spectroscopy over the last one hundred years or so. In this book we have collected together twenty chapters by eminent scientists from around the world to describe their work at the cutting edge of molecular spectroscopy. These chapters describe new methodology and applications, instrumental developments, and theory which is taking spectroscopy into new frontiers. The range of topics is broad. Lasers are utilized in much of the research, but their applications range from sub-femtosecond spectroscopy to the study of viruses and also to the investigation of art and archeological artifacts. Three chapters discuss work on biological systems and three others represent laser physics. The recent advances in cavity ringdown spectroscopy (CRDS), surface enhanced Raman spectroscopy (SERS), two-dimensional correlation spectroscopy (2D-COS), and microwave techniques are all covered. Chapters on electronic excited states, molecular dynamics, symmetry applications, and neutron scattering are also included and demonstrate the wide utility of spectroscopic techniques. - Provides comprehensive coverage of present spectroscopic investigations - Features 20 chapters written by leading researchers in the field - Covers the important role of molecular spectroscopy in research concerned with chemistry, physics, and biology
Neuroscience perspectives on Security: Technology, Detection, and Decision Making
Author: Elena Rusconi
Publisher: Frontiers Media SA
ISBN: 2889196003
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 110
Book Description
In security science, efficient operation depends typically on the interaction between technology, human and machine detection and human and machine decision making. A perfect example of this interplay is ‘gatekeeping’, which is aimed to prevent the passage of people and objects that represent known threats from one end to the other end of an access point. Gatekeeping is most often achieved via visual inspections, mass screening, random sample probing and/or more targeted controls on attempted passages at points of entry. Points of entry may be physical (e.g. national borders) or virtual (e.g. connection log-ons). Who and what are defined as security threats and the resources available to gatekeepers determine the type of checks and technologies that are put in place to ensure appropriate access control. More often than not, the net performance of technology-aided screening and authentication systems ultimately depends on the characteristics of human operators. Assessing cognitive, affective, behavioural, perceptual and brain processes that may affect gatekeepers while undertaking this task is fundamental. On the other hand, assessing the same processes in those individuals who try to breach access to secure systems (e.g. hackers), and try to cheat controls (e.g. smugglers) is equally fundamental and challenging. From a security standpoint it is vital to be able to anticipate, focus on and correctly interpret the signals connected with such attempts to breach access and/or elude controls, in order to be proactive and to enact appropriate responses. Knowing cognitive, behavioral, social and neural constraints that may affect the security enterprise will undoubtedly result in a more effective deployment of existing human and technological resources. Studying how inter-observer variability, human factors and biology may affect the security agenda, and the usability of existing security technologies, is of great economic and policy interest. In addition, brain sciences may suggest the possibility of novel methods of surveillance and intelligence gathering. This is just one example of a typical security issue that may be fruitfully tackled from a neuroscientific and interdisciplinary perspective. The objective of our Research Topic was to document across relevant disciplines some of the most recent developments, ideas, methods and empirical findings that have the potential to expand our knowledge of the human factors involved in the security process. To this end we welcomed empirical contributions using different methodologies such as those applied in human cognitive neuroscience, biometrics and ethology. We also accepted original theoretical contributions, in the form of review articles, perspectives or opinion papers on this topic. The submissions brought together researchers from different backgrounds to discuss topics which have scientific, applicative and social relevance.
Publisher: Frontiers Media SA
ISBN: 2889196003
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 110
Book Description
In security science, efficient operation depends typically on the interaction between technology, human and machine detection and human and machine decision making. A perfect example of this interplay is ‘gatekeeping’, which is aimed to prevent the passage of people and objects that represent known threats from one end to the other end of an access point. Gatekeeping is most often achieved via visual inspections, mass screening, random sample probing and/or more targeted controls on attempted passages at points of entry. Points of entry may be physical (e.g. national borders) or virtual (e.g. connection log-ons). Who and what are defined as security threats and the resources available to gatekeepers determine the type of checks and technologies that are put in place to ensure appropriate access control. More often than not, the net performance of technology-aided screening and authentication systems ultimately depends on the characteristics of human operators. Assessing cognitive, affective, behavioural, perceptual and brain processes that may affect gatekeepers while undertaking this task is fundamental. On the other hand, assessing the same processes in those individuals who try to breach access to secure systems (e.g. hackers), and try to cheat controls (e.g. smugglers) is equally fundamental and challenging. From a security standpoint it is vital to be able to anticipate, focus on and correctly interpret the signals connected with such attempts to breach access and/or elude controls, in order to be proactive and to enact appropriate responses. Knowing cognitive, behavioral, social and neural constraints that may affect the security enterprise will undoubtedly result in a more effective deployment of existing human and technological resources. Studying how inter-observer variability, human factors and biology may affect the security agenda, and the usability of existing security technologies, is of great economic and policy interest. In addition, brain sciences may suggest the possibility of novel methods of surveillance and intelligence gathering. This is just one example of a typical security issue that may be fruitfully tackled from a neuroscientific and interdisciplinary perspective. The objective of our Research Topic was to document across relevant disciplines some of the most recent developments, ideas, methods and empirical findings that have the potential to expand our knowledge of the human factors involved in the security process. To this end we welcomed empirical contributions using different methodologies such as those applied in human cognitive neuroscience, biometrics and ethology. We also accepted original theoretical contributions, in the form of review articles, perspectives or opinion papers on this topic. The submissions brought together researchers from different backgrounds to discuss topics which have scientific, applicative and social relevance.