Author: Jean Zinn-Justin
Publisher: Oxford University Press
ISBN: 0191091685
Category : Science
Languages : en
Pages : 544
Book Description
Theoretical physics is a cornerstone of modern physics and provides a foundation for all modern quantitative science. It aims to describe all natural phenomena using mathematical theories and models, and in consequence develops our understanding of the fundamental nature of the universe. This books offers an overview of major areas covering the recent developments in modern theoretical physics. Each chapter introduces a new key topic and develops the discussion in a self-contained manner. At the same time the selected topics have common themes running throughout the book, which connect the independent discussions. The main themes are renormalization group, fixed points, universality, and continuum limit, which open and conclude the work. The development of modern theoretical physics has required important concepts and novel mathematical tools, examples discussed in the book include path and field integrals, the notion of effective quantum or statistical field theories, gauge theories, and the mathematical structure at the basis of the interactions in fundamental particle physics, including quantization problems and anomalies, stochastic dynamical equations, and summation of perturbative series.
From Random Walks to Random Matrices
Random Walks on Reductive Groups
Author: Yves Benoist
Publisher: Springer
ISBN: 3319477218
Category : Mathematics
Languages : en
Pages : 319
Book Description
The classical theory of random walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.
Publisher: Springer
ISBN: 3319477218
Category : Mathematics
Languages : en
Pages : 319
Book Description
The classical theory of random walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.
From Random Walks to Random Matrices
Author: Jean Zinn-Justin
Publisher: Oxford University Press, USA
ISBN: 0198787758
Category : Science
Languages : en
Pages : 544
Book Description
Theoretical physics is a cornerstone of modern physics and provides a foundation for all modern quantitative science. It aims to describe all natural phenomena using mathematical theories and models, and in consequence develops our understanding of the fundamental nature of the universe. This books offers an overview of major areas covering the recent developments in modern theoretical physics. Each chapter introduces a new key topic and develops the discussion in a self-contained manner. At the same time the selected topics have common themes running throughout the book, which connect the independent discussions. The main themes are renormalization group, fixed points, universality, and continuum limit, which open and conclude the work. The development of modern theoretical physics has required important concepts and novel mathematical tools, examples discussed in the book include path and field integrals, the notion of effective quantum or statistical field theories, gauge theories, and the mathematical structure at the basis of the interactions in fundamental particle physics, including quantization problems and anomalies, stochastic dynamical equations, and summation of perturbative series.
Publisher: Oxford University Press, USA
ISBN: 0198787758
Category : Science
Languages : en
Pages : 544
Book Description
Theoretical physics is a cornerstone of modern physics and provides a foundation for all modern quantitative science. It aims to describe all natural phenomena using mathematical theories and models, and in consequence develops our understanding of the fundamental nature of the universe. This books offers an overview of major areas covering the recent developments in modern theoretical physics. Each chapter introduces a new key topic and develops the discussion in a self-contained manner. At the same time the selected topics have common themes running throughout the book, which connect the independent discussions. The main themes are renormalization group, fixed points, universality, and continuum limit, which open and conclude the work. The development of modern theoretical physics has required important concepts and novel mathematical tools, examples discussed in the book include path and field integrals, the notion of effective quantum or statistical field theories, gauge theories, and the mathematical structure at the basis of the interactions in fundamental particle physics, including quantization problems and anomalies, stochastic dynamical equations, and summation of perturbative series.
A First Course in Random Matrix Theory
Author: Marc Potters
Publisher: Cambridge University Press
ISBN: 1108488080
Category : Computers
Languages : en
Pages : 371
Book Description
An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.
Publisher: Cambridge University Press
ISBN: 1108488080
Category : Computers
Languages : en
Pages : 371
Book Description
An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.
An Introduction to Random Matrices
Author: Greg W. Anderson
Publisher: Cambridge University Press
ISBN: 0521194520
Category : Mathematics
Languages : en
Pages : 507
Book Description
A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.
Publisher: Cambridge University Press
ISBN: 0521194520
Category : Mathematics
Languages : en
Pages : 507
Book Description
A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.
A Dynamical Approach to Random Matrix Theory
Author: László Erdős
Publisher: American Mathematical Soc.
ISBN: 1470436485
Category : Mathematics
Languages : en
Pages : 239
Book Description
A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
Publisher: American Mathematical Soc.
ISBN: 1470436485
Category : Mathematics
Languages : en
Pages : 239
Book Description
A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
Random Walk and the Heat Equation
Author: Gregory F. Lawler
Publisher: American Mathematical Soc.
ISBN: 0821848291
Category : Mathematics
Languages : en
Pages : 170
Book Description
The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.
Publisher: American Mathematical Soc.
ISBN: 0821848291
Category : Mathematics
Languages : en
Pages : 170
Book Description
The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.
Probability Measures on Semigroups: Convolution Products, Random Walks and Random Matrices
Author: Göran Högnäs
Publisher: Springer Science & Business Media
ISBN: 1475723881
Category : Mathematics
Languages : en
Pages : 399
Book Description
A Scientific American article on chaos, see Crutchfield et al. (1986), illus trates a very persuasive example of recurrence. A painting of Henri Poincare, or rather a digitized version of it, is stretched and cut to produce a mildly distorted image of Poincare. The same procedure is applied to the distorted image and the process is repeated over and over again on the successively more and more blurred images. After a dozen repetitions nothing seems to be left of the original portrait. Miraculously, structured images appear briefly as we continue to apply the distortion procedure to successive images. After 241 iterations the original picture reappears, unchanged! Apparently the pixels of the Poincare portrait were moving about in accor dance with a strictly deterministic rule. More importantly, the set of all pixels, the whole portrait, was transformed by the distortion mechanism. In this exam ple the transformation seems to have been a reversible one since the original was faithfully recreated. It is not very farfetched to introduce a certain amount of randomness and irreversibility in the above example. Think of a random miscoloring of some pixels or of inadvertently giving a pixel the color of its neighbor. The methods in this book are geared towards being applicable to the asymp totics of such transformation processes. The transformations form a semigroup in a natural way; we want to investigate the long-term behavior of random elements of this semigroup.
Publisher: Springer Science & Business Media
ISBN: 1475723881
Category : Mathematics
Languages : en
Pages : 399
Book Description
A Scientific American article on chaos, see Crutchfield et al. (1986), illus trates a very persuasive example of recurrence. A painting of Henri Poincare, or rather a digitized version of it, is stretched and cut to produce a mildly distorted image of Poincare. The same procedure is applied to the distorted image and the process is repeated over and over again on the successively more and more blurred images. After a dozen repetitions nothing seems to be left of the original portrait. Miraculously, structured images appear briefly as we continue to apply the distortion procedure to successive images. After 241 iterations the original picture reappears, unchanged! Apparently the pixels of the Poincare portrait were moving about in accor dance with a strictly deterministic rule. More importantly, the set of all pixels, the whole portrait, was transformed by the distortion mechanism. In this exam ple the transformation seems to have been a reversible one since the original was faithfully recreated. It is not very farfetched to introduce a certain amount of randomness and irreversibility in the above example. Think of a random miscoloring of some pixels or of inadvertently giving a pixel the color of its neighbor. The methods in this book are geared towards being applicable to the asymp totics of such transformation processes. The transformations form a semigroup in a natural way; we want to investigate the long-term behavior of random elements of this semigroup.
First Steps in Random Walks
Author: J. Klafter
Publisher: Oxford University Press
ISBN: 0199234868
Category : Business & Economics
Languages : en
Pages : 161
Book Description
Random walks proved to be a useful model of many complex transport processes at the micro and macroscopical level in physics and chemistry, economics, biology and other disciplines. The book discusses the main variants of random walks and gives the most important mathematical tools for their theoretical description.
Publisher: Oxford University Press
ISBN: 0199234868
Category : Business & Economics
Languages : en
Pages : 161
Book Description
Random walks proved to be a useful model of many complex transport processes at the micro and macroscopical level in physics and chemistry, economics, biology and other disciplines. The book discusses the main variants of random walks and gives the most important mathematical tools for their theoretical description.
Random Walks on Infinite Graphs and Groups
Author: Wolfgang Woess
Publisher: Cambridge University Press
ISBN: 0521552923
Category : Mathematics
Languages : en
Pages : 350
Book Description
The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.
Publisher: Cambridge University Press
ISBN: 0521552923
Category : Mathematics
Languages : en
Pages : 350
Book Description
The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.