From Natural to Artificial Neural Computation

From Natural to Artificial Neural Computation PDF Author: Jose Mira
Publisher: Springer Science & Business Media
ISBN: 9783540594970
Category : Computers
Languages : en
Pages : 1182

Get Book Here

Book Description
This volume presents the proceedings of the International Workshop on Artificial Neural Networks, IWANN '95, held in Torremolinos near Malaga, Spain in June 1995. The book contains 143 revised papers selected from a wealth of submissions and five invited contributions; it covers all current aspects of neural computation and presents the state of the art of ANN research and applications. The papers are organized in sections on neuroscience, computational models of neurons and neural nets, organization principles, learning, cognitive science and AI, neurosimulators, implementation, neural networks for perception, and neural networks for communication and control.

From Natural to Artificial Neural Computation

From Natural to Artificial Neural Computation PDF Author: Jose Mira
Publisher: Springer Science & Business Media
ISBN: 9783540594970
Category : Computers
Languages : en
Pages : 1182

Get Book Here

Book Description
This volume presents the proceedings of the International Workshop on Artificial Neural Networks, IWANN '95, held in Torremolinos near Malaga, Spain in June 1995. The book contains 143 revised papers selected from a wealth of submissions and five invited contributions; it covers all current aspects of neural computation and presents the state of the art of ANN research and applications. The papers are organized in sections on neuroscience, computational models of neurons and neural nets, organization principles, learning, cognitive science and AI, neurosimulators, implementation, neural networks for perception, and neural networks for communication and control.

Handbook of Neural Computation

Handbook of Neural Computation PDF Author: Pijush Samui
Publisher: Academic Press
ISBN: 0128113197
Category : Technology & Engineering
Languages : en
Pages : 660

Get Book Here

Book Description
Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. - Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more - Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing - Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods

Natural and Artificial Parallel Computation

Natural and Artificial Parallel Computation PDF Author: Michael A. Arbib
Publisher: Mit Press
ISBN: 9780262011204
Category : Computers
Languages : en
Pages : 345

Get Book Here

Book Description
These eleven contributions by leaders in the fields of neuroscience, artificial intelligence, and cognitive science cover the phenomenon of parallelism in both natural and artificial systems, from the neural architecture of the human brain to the electronic architecture of parallel computers.The brain's complex neural architecture not only supports higher mental processes, such as learning, perception, and thought, but also supervises the body's basic physiological operating system and oversees its emergency services of damage control and self-repair. By combining sound empirical observation with elegant theoretical modeling, neuroscientists are rapidly developing a detailed and convincing account of the organization and the functioning of this natural, living parallel machine. At the same time, computer scientists and engineers are devising imaginative parallel computing machines and the programming languages and techniques necessary to use them to create superb new experimental instruments for the study of all parallel systems.Michael A. Arbib is Professor of Computer Science, Neurobiology, and Physiology at the University of Southern California. J. Alan Robinson is University Professor at Syracuse University.Contents: Natural and Artificial Parallel Computation, M. A. Arbib, J. A. Robinson. The Evolution of Computing, R. E. Gomory. The Nature of Parallel Programming, P. Brinch Hansen. Toward General Purpose Parallel Computers, D. May. Applications of Parallel Supercomputers, G. E. Fox. Cooperative Computation in Brains and Computers, M. A. Arbib. Parallel Processing in the Primate Cortex, P. Goldman-Rakic. Neural Darwinism, G. M. Edelman, G. N. Reeke, Jr. How the Brain Rewires Itself, M. Merzenich. Memory-Based Reasoning, D. Waltz. Natural and Artificial Reasoning, J. A. Robinson.

Unsupervised Learning

Unsupervised Learning PDF Author: Geoffrey Hinton
Publisher: MIT Press
ISBN: 9780262581684
Category : Medical
Languages : en
Pages : 420

Get Book Here

Book Description
Since its founding in 1989 by Terrence Sejnowski, Neural Computation has become the leading journal in the field. Foundations of Neural Computation collects, by topic, the most significant papers that have appeared in the journal over the past nine years. This volume of Foundations of Neural Computation, on unsupervised learning algorithms, focuses on neural network learning algorithms that do not require an explicit teacher. The goal of unsupervised learning is to extract an efficient internal representation of the statistical structure implicit in the inputs. These algorithms provide insights into the development of the cerebral cortex and implicit learning in humans. They are also of interest to engineers working in areas such as computer vision and speech recognition who seek efficient representations of raw input data.

Artificial Intelligence in the Age of Neural Networks and Brain Computing

Artificial Intelligence in the Age of Neural Networks and Brain Computing PDF Author: Robert Kozma
Publisher: Academic Press
ISBN: 0323958168
Category : Computers
Languages : en
Pages : 398

Get Book Here

Book Description
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks

Sensitivity Analysis for Neural Networks

Sensitivity Analysis for Neural Networks PDF Author: Daniel S. Yeung
Publisher: Springer Science & Business Media
ISBN: 3642025323
Category : Computers
Languages : en
Pages : 89

Get Book Here

Book Description
Artificial neural networks are used to model systems that receive inputs and produce outputs. The relationships between the inputs and outputs and the representation parameters are critical issues in the design of related engineering systems, and sensitivity analysis concerns methods for analyzing these relationships. Perturbations of neural networks are caused by machine imprecision, and they can be simulated by embedding disturbances in the original inputs or connection weights, allowing us to study the characteristics of a function under small perturbations of its parameters. This is the first book to present a systematic description of sensitivity analysis methods for artificial neural networks. It covers sensitivity analysis of multilayer perceptron neural networks and radial basis function neural networks, two widely used models in the machine learning field. The authors examine the applications of such analysis in tasks such as feature selection, sample reduction, and network optimization. The book will be useful for engineers applying neural network sensitivity analysis to solve practical problems, and for researchers interested in foundational problems in neural networks.

Fundamentals of Artificial Neural Networks

Fundamentals of Artificial Neural Networks PDF Author: Mohamad H. Hassoun
Publisher: MIT Press
ISBN: 9780262082396
Category : Computers
Languages : en
Pages : 546

Get Book Here

Book Description
A systematic account of artificial neural network paradigms that identifies fundamental concepts and major methodologies. Important results are integrated into the text in order to explain a wide range of existing empirical observations and commonly used heuristics.

Neural Computing for Advanced Applications

Neural Computing for Advanced Applications PDF Author: Haijun Zhang
Publisher: Springer Nature
ISBN: 981157670X
Category : Computers
Languages : en
Pages : 542

Get Book Here

Book Description
This book presents refereed proceedings of the First International Conference on Neural Computing for Advanced Applications, NCAA 2020, held in July, 2020. Due to the COVID-19 pandemic the conference was held online. The 36 full papers and 7 short papers were thorougly reviewed and selected from a total of 113 qualified submissions. The papers present resent research on such topics as neural network theory, and cognitive sciences, machine learning, data mining, data security & privacy protection, and data-driven applications, computational intelligence, nature-inspired optimizers, and their engineering applications, cloud/edge/fog computing, the Internet of Things/Vehicles (IoT/IoV), and their system optimization, control systems, network synchronization, system integration, and industrial artificial intelligence, fuzzy logic, neuro-fuzzy systems, decision making, and their applications in management sciences, computer vision, image processing, and their industrial applications, and natural language processing, machine translation, knowledge graphs, and their applications.

Soft Computing for Reservoir Characterization and Modeling

Soft Computing for Reservoir Characterization and Modeling PDF Author: Patrick Wong
Publisher: Physica
ISBN: 3790818070
Category : Science
Languages : en
Pages : 582

Get Book Here

Book Description
In the middle of the 20th century, Genrich Altshuller, a Russian engineer, analysed hundreds of thousands of patents and scientific publications. From this analysis, he developed TRIZ (G. Altshuller, "40 Principles: TRIZ Keys to Technical Innovation. TRIZ Tools," Volume 1, First Edition, Technical Innovation Center, Inc. , Worcester, MA, January 1998; Y. Salamatov, "TRIZ: The Right Solution at the Right Time. A Guide to Innovative Problem Solving. " Insytec B. V. , 1999), the theory of inventive problem solving, together with a series of practical tools for helping engineers solving technical problems. Among these tools and theories, the substance-field theory gives a structured way of representing problems, the patterns of evolution show the lifecycle of technical systems, the contradiction matrix tells you how to resolve technical contradictions, using the forty principles that describe common ways of improving technical systems. For example, if you want to increase the strength of a device, without adding too much extra weight to it, the contradiction matrix tells you that you can use "Principle 1: Segmentation," or "Principle 8: Counterweight," or "Principle 15: Dynamicity," or "Principle 40: Composite Materials. " I really like two particular ones: "Principle 1: Segmentation," and Principle 15: Dynamicity. " "Segmentation" shows how systems evolve from an initial monolithic form into a set of independent parts, then eventually increasing the number of parts until each part becomes small enough that it cannot be identified anymore.

Neural Networks and Analog Computation

Neural Networks and Analog Computation PDF Author: Hava T. Siegelmann
Publisher: Springer Science & Business Media
ISBN: 146120707X
Category : Computers
Languages : en
Pages : 193

Get Book Here

Book Description
The theoretical foundations of Neural Networks and Analog Computation conceptualize neural networks as a particular type of computer consisting of multiple assemblies of basic processors interconnected in an intricate structure. Examining these networks under various resource constraints reveals a continuum of computational devices, several of which coincide with well-known classical models. On a mathematical level, the treatment of neural computations enriches the theory of computation but also explicated the computational complexity associated with biological networks, adaptive engineering tools, and related models from the fields of control theory and nonlinear dynamics. The material in this book will be of interest to researchers in a variety of engineering and applied sciences disciplines. In addition, the work may provide the base of a graduate-level seminar in neural networks for computer science students.