Author: Giampiero Esposito
Publisher: Cambridge University Press
ISBN: 1139450549
Category : Science
Languages : en
Pages : 612
Book Description
This 2004 textbook provides a pedagogical introduction to the formalism, foundations and applications of quantum mechanics. Part I covers the basic material which is necessary to understand the transition from classical to wave mechanics. Topics include classical dynamics, with emphasis on canonical transformations and the Hamilton-Jacobi equation, the Cauchy problem for the wave equation, Helmholtz equation and eikonal approximation, introduction to spin, perturbation theory and scattering theory. The Weyl quantization is presented in Part II, along with the postulates of quantum mechanics. Part III is devoted to topics such as statistical mechanics and black-body radiation, Lagrangian and phase-space formulations of quantum mechanics, and the Dirac equation. This book is intended for use as a textbook for beginning graduate and advanced undergraduate courses. It is self-contained and includes problems to aid the reader's understanding.
From Classical to Quantum Mechanics
Author: Giampiero Esposito
Publisher: Cambridge University Press
ISBN: 1139450549
Category : Science
Languages : en
Pages : 612
Book Description
This 2004 textbook provides a pedagogical introduction to the formalism, foundations and applications of quantum mechanics. Part I covers the basic material which is necessary to understand the transition from classical to wave mechanics. Topics include classical dynamics, with emphasis on canonical transformations and the Hamilton-Jacobi equation, the Cauchy problem for the wave equation, Helmholtz equation and eikonal approximation, introduction to spin, perturbation theory and scattering theory. The Weyl quantization is presented in Part II, along with the postulates of quantum mechanics. Part III is devoted to topics such as statistical mechanics and black-body radiation, Lagrangian and phase-space formulations of quantum mechanics, and the Dirac equation. This book is intended for use as a textbook for beginning graduate and advanced undergraduate courses. It is self-contained and includes problems to aid the reader's understanding.
Publisher: Cambridge University Press
ISBN: 1139450549
Category : Science
Languages : en
Pages : 612
Book Description
This 2004 textbook provides a pedagogical introduction to the formalism, foundations and applications of quantum mechanics. Part I covers the basic material which is necessary to understand the transition from classical to wave mechanics. Topics include classical dynamics, with emphasis on canonical transformations and the Hamilton-Jacobi equation, the Cauchy problem for the wave equation, Helmholtz equation and eikonal approximation, introduction to spin, perturbation theory and scattering theory. The Weyl quantization is presented in Part II, along with the postulates of quantum mechanics. Part III is devoted to topics such as statistical mechanics and black-body radiation, Lagrangian and phase-space formulations of quantum mechanics, and the Dirac equation. This book is intended for use as a textbook for beginning graduate and advanced undergraduate courses. It is self-contained and includes problems to aid the reader's understanding.
Chaos in Classical and Quantum Mechanics
Author: Martin C. Gutzwiller
Publisher: Springer Science & Business Media
ISBN: 1461209838
Category : Mathematics
Languages : en
Pages : 445
Book Description
Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.
Publisher: Springer Science & Business Media
ISBN: 1461209838
Category : Mathematics
Languages : en
Pages : 445
Book Description
Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.
Mathematics of Classical and Quantum Physics
Author: Frederick W. Byron
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674
Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674
Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
Geometric Formulation of Classical and Quantum Mechanics
Author: G. Giachetta
Publisher: World Scientific
ISBN: 9814313726
Category : Science
Languages : en
Pages : 405
Book Description
The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. This book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent coordinate and reference frame transformations.
Publisher: World Scientific
ISBN: 9814313726
Category : Science
Languages : en
Pages : 405
Book Description
The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. This book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent coordinate and reference frame transformations.
Advanced Quantum Mechanics
Author: Reinhold Blümel
Publisher: Jones & Bartlett Learning
ISBN: 1934015520
Category : Science
Languages : en
Pages : 438
Book Description
Physics
Publisher: Jones & Bartlett Learning
ISBN: 1934015520
Category : Science
Languages : en
Pages : 438
Book Description
Physics
Problems in Classical and Quantum Mechanics
Author: J. Daniel Kelley
Publisher: Springer
ISBN: 331946664X
Category : Science
Languages : en
Pages : 358
Book Description
This book is a collection of problems that are intended to aid students in graduate and undergraduate courses in Classical and Quantum Physics. It is also intended to be a study aid for students that are preparing for the PhD qualifying exam. Many of the included problems are of a type that could be on a qualifying exam. Others are meant to elucidate important concepts. Unlike other compilations of problems, the detailed solutions are often accompanied by discussions that reach beyond the specific problem.The solution of the problem is only the beginning of the learning process--it is by manipulation of the solution and changing of the parameters that a great deal of insight can be gleaned. The authors refer to this technique as "massaging the problem," and it is an approach that the authors feel increases the pedagogical value of any problem.
Publisher: Springer
ISBN: 331946664X
Category : Science
Languages : en
Pages : 358
Book Description
This book is a collection of problems that are intended to aid students in graduate and undergraduate courses in Classical and Quantum Physics. It is also intended to be a study aid for students that are preparing for the PhD qualifying exam. Many of the included problems are of a type that could be on a qualifying exam. Others are meant to elucidate important concepts. Unlike other compilations of problems, the detailed solutions are often accompanied by discussions that reach beyond the specific problem.The solution of the problem is only the beginning of the learning process--it is by manipulation of the solution and changing of the parameters that a great deal of insight can be gleaned. The authors refer to this technique as "massaging the problem," and it is an approach that the authors feel increases the pedagogical value of any problem.
Classical Systems in Quantum Mechanics
Author: Pavel Bóna
Publisher: Springer Nature
ISBN: 3030450708
Category : Science
Languages : en
Pages : 243
Book Description
This book investigates two possibilities for describing classical-mechanical physical systems along with their Hamiltonian dynamics in the framework of quantum mechanics.The first possibility consists in exploiting the geometrical properties of the set of quantum pure states of "microsystems" and of the Lie groups characterizing the specific classical system. The second approach is to consider quantal systems of a large number of interacting subsystems – i.e. macrosystems, so as to study the quantum mechanics of an infinite number of degrees of freedom and to look for the behaviour of their collective variables. The final chapter contains some solvable models of “quantum measurement" describing dynamical transitions from "microsystems" to "macrosystems".
Publisher: Springer Nature
ISBN: 3030450708
Category : Science
Languages : en
Pages : 243
Book Description
This book investigates two possibilities for describing classical-mechanical physical systems along with their Hamiltonian dynamics in the framework of quantum mechanics.The first possibility consists in exploiting the geometrical properties of the set of quantum pure states of "microsystems" and of the Lie groups characterizing the specific classical system. The second approach is to consider quantal systems of a large number of interacting subsystems – i.e. macrosystems, so as to study the quantum mechanics of an infinite number of degrees of freedom and to look for the behaviour of their collective variables. The final chapter contains some solvable models of “quantum measurement" describing dynamical transitions from "microsystems" to "macrosystems".
Quantum Information Theory
Author: Mark Wilde
Publisher: Cambridge University Press
ISBN: 1107034256
Category : Computers
Languages : en
Pages : 673
Book Description
A self-contained, graduate-level textbook that develops from scratch classical results as well as advances of the past decade.
Publisher: Cambridge University Press
ISBN: 1107034256
Category : Computers
Languages : en
Pages : 673
Book Description
A self-contained, graduate-level textbook that develops from scratch classical results as well as advances of the past decade.
Geometric Phases in Classical and Quantum Mechanics
Author: Dariusz Chruscinski
Publisher: Springer Science & Business Media
ISBN: 0817681760
Category : Mathematics
Languages : en
Pages : 346
Book Description
Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.
Publisher: Springer Science & Business Media
ISBN: 0817681760
Category : Mathematics
Languages : en
Pages : 346
Book Description
Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.
A Brief Introduction to Classical, Statistical, and Quantum Mechanics
Author: Oliver Bühler
Publisher: American Mathematical Soc.
ISBN: 0821842323
Category : Mathematics
Languages : en
Pages : 165
Book Description
This book provides a rapid overview of the basic methods and concepts in mechanics for beginning Ph.D. students and advanced undergraduates in applied mathematics or related fields. It is based on a graduate course given in 2006-07 at the Courant Institute of Mathematical Sciences. Among other topics, the book introduces Newton's law, action principles, Hamilton-Jacobi theory, geometric wave theory, analytical and numerical statistical mechanics, discrete and continuous quantum mechanics, and quantum path-integral methods. The focus is on fundamental mathematical methods that provide connections between seemingly unrelated subjects. An example is Hamilton-Jacobi theory, which appears in the calculus of variations, in Fermat's principle of classical mechanics, and in the geometric theory of dispersive wavetrains. The material is developed in a sequence of simple examples and the book can be used in a one-semester class on classical, statistical, and quantum mechanics. Some familiarity with differential equations is required but otherwise the book is self-contained. In particular, no previous knowledge of physics is assumed. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
Publisher: American Mathematical Soc.
ISBN: 0821842323
Category : Mathematics
Languages : en
Pages : 165
Book Description
This book provides a rapid overview of the basic methods and concepts in mechanics for beginning Ph.D. students and advanced undergraduates in applied mathematics or related fields. It is based on a graduate course given in 2006-07 at the Courant Institute of Mathematical Sciences. Among other topics, the book introduces Newton's law, action principles, Hamilton-Jacobi theory, geometric wave theory, analytical and numerical statistical mechanics, discrete and continuous quantum mechanics, and quantum path-integral methods. The focus is on fundamental mathematical methods that provide connections between seemingly unrelated subjects. An example is Hamilton-Jacobi theory, which appears in the calculus of variations, in Fermat's principle of classical mechanics, and in the geometric theory of dispersive wavetrains. The material is developed in a sequence of simple examples and the book can be used in a one-semester class on classical, statistical, and quantum mechanics. Some familiarity with differential equations is required but otherwise the book is self-contained. In particular, no previous knowledge of physics is assumed. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.