Author: Christopher E. Tibbs
Publisher:
ISBN:
Category : Frequency modulation
Languages : en
Pages : 460
Book Description
Modulation, Demodulation, Amplitude (Schwingungstechnik).
Frequency Modulation Engineering
Author: Christopher E. Tibbs
Publisher:
ISBN:
Category : Frequency modulation
Languages : en
Pages : 460
Book Description
Modulation, Demodulation, Amplitude (Schwingungstechnik).
Publisher:
ISBN:
Category : Frequency modulation
Languages : en
Pages : 460
Book Description
Modulation, Demodulation, Amplitude (Schwingungstechnik).
Radio Frequency Modulation Made Easy
Author: Saleh Faruque
Publisher: Springer
ISBN: 3319412027
Category : Technology & Engineering
Languages : en
Pages : 110
Book Description
This book introduces Radio Frequency Modulation to a broad audience. The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications. The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.
Publisher: Springer
ISBN: 3319412027
Category : Technology & Engineering
Languages : en
Pages : 110
Book Description
This book introduces Radio Frequency Modulation to a broad audience. The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications. The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.
Modulation Theory
Author: Alencar, Marcelo Sampaio de
Publisher: River Publishers
ISBN: 8770220263
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
In recent years, a considerable amount of effort has been devoted, both in industry and academia, towards the design, performance analysis and evaluation of modulation schemes to be used in wireless and optical networks, towards the development of the next and future generations of mobile cellular communication systems. Modulation Theory is intended to serve as a complementary textbook for courses dealing with Modulation Theory or Communication Systems, but also as a professional book, for engineers who need to update their knowledge in the communications area. The modulation aspects presented in the book use modern concepts of stochastic processes, such as autocorrelation and power spectrum density, which are novel for undergraduate texts or professional books, and provides a general approach for the theory, with real life results, applied to professional design. This text is suitable for the undergraduate as well as the initial graduate levels of Electrical Engineering courses, and is useful for the professional who wants to review or get acquainted with the a modern exposition of the modulation theory. The book covers signal representations for most known waveforms, Fourier analysis, and presents an introduction to Fourier transform and signal spectrum, including the concepts of convolution, autocorrelation and power spectral density, for deterministic signals. It introduces the concepts of probability, random variables and stochastic processes, including autocorrelation, cross-correlation, power spectral and cross-spectral densities, for random signals, and their applications to the analysis of linear systems. This chapter also includes the response of specific non-linear systems, such as power amplifiers. The book presents amplitude modulation with random signals, including analog and digital signals, and discusses performance evaluation methods, presents quadrature amplitude modulation using random signals. Several modulation schemes are discussed, including SSB, QAM, ISB, C-QUAM, QPSK and MSK. Their autocorrelation and power spectrum densities are computed. A thorough discussion on angle modulation with random modulating signals, along with frequency and phase modulation, and orthogonal frequency division multiplexing is provided. Their power spectrum densities are computed using the Wiener-Khintchin theorem.
Publisher: River Publishers
ISBN: 8770220263
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
In recent years, a considerable amount of effort has been devoted, both in industry and academia, towards the design, performance analysis and evaluation of modulation schemes to be used in wireless and optical networks, towards the development of the next and future generations of mobile cellular communication systems. Modulation Theory is intended to serve as a complementary textbook for courses dealing with Modulation Theory or Communication Systems, but also as a professional book, for engineers who need to update their knowledge in the communications area. The modulation aspects presented in the book use modern concepts of stochastic processes, such as autocorrelation and power spectrum density, which are novel for undergraduate texts or professional books, and provides a general approach for the theory, with real life results, applied to professional design. This text is suitable for the undergraduate as well as the initial graduate levels of Electrical Engineering courses, and is useful for the professional who wants to review or get acquainted with the a modern exposition of the modulation theory. The book covers signal representations for most known waveforms, Fourier analysis, and presents an introduction to Fourier transform and signal spectrum, including the concepts of convolution, autocorrelation and power spectral density, for deterministic signals. It introduces the concepts of probability, random variables and stochastic processes, including autocorrelation, cross-correlation, power spectral and cross-spectral densities, for random signals, and their applications to the analysis of linear systems. This chapter also includes the response of specific non-linear systems, such as power amplifiers. The book presents amplitude modulation with random signals, including analog and digital signals, and discusses performance evaluation methods, presents quadrature amplitude modulation using random signals. Several modulation schemes are discussed, including SSB, QAM, ISB, C-QUAM, QPSK and MSK. Their autocorrelation and power spectrum densities are computed. A thorough discussion on angle modulation with random modulating signals, along with frequency and phase modulation, and orthogonal frequency division multiplexing is provided. Their power spectrum densities are computed using the Wiener-Khintchin theorem.
How to Make a Noise
Author: Simon Cann
Publisher: Simon Cann
ISBN: 0955495504
Category : Music
Languages : en
Pages : 289
Book Description
How To Make A Noise: a Comprehensive Guide to Synthesizer Programming is perhaps the most widely ready book about synthesizer sound programming. It is a comprehensive, practical guide to sound design and synthesizer programming techniques using: subtractive (analog) synthesis; frequency modulation synthesis (including phase modulation and ring modulation); additive synthesis; wave-sequencing; sample-based synthesis.
Publisher: Simon Cann
ISBN: 0955495504
Category : Music
Languages : en
Pages : 289
Book Description
How To Make A Noise: a Comprehensive Guide to Synthesizer Programming is perhaps the most widely ready book about synthesizer sound programming. It is a comprehensive, practical guide to sound design and synthesizer programming techniques using: subtractive (analog) synthesis; frequency modulation synthesis (including phase modulation and ring modulation); additive synthesis; wave-sequencing; sample-based synthesis.
PSpice for Digital Communications Engineering
Author: Paul Tobin
Publisher: Morgan & Claypool Publishers
ISBN: 1598291629
Category : Digital communications
Languages : en
Pages : 215
Book Description
PSpice for Digital Communications Engineering shows how to simulate digital communication systems and modulation methods using the very powerful Cadence Orcad PSpice version 10.5 suite of software programs. Fourier series and Fourier transform are applied to signals to set the ground work for the modulation techniques introduced in later chapters. Various baseband signals, including duo-binary baseband signaling, are generated and the spectra are examined to detail the unsuitability of these signals for accessing the public switched network. Pulse code modulation and time-division multiplexing circuits are examined and simulated where sampling and quantization noise topics are discussed. We construct a single-channel PCM system from transmission to receiver i.e. end-to-end, and import real speech signals to examine the problems associated with aliasing, sample and hold.Companding is addressed here and we look at the A and mu law characteristics for achieving better signal to quantization noise ratios. Several types of delta modulators are examined and also the concept of time divisionmultiplexing is considered. Multi-level signaling techniques such as QPSK andQAMare analyzed and simulated and 'home-made meters', such as scatter and eye meters, are used to assess the performance of these modulation systems in the presence of noise. The raised-cosine family of filters for shaping data before transmission is examined in depth where bandwidth efficiency and channel capacity is discussed. We plot several graphs in Probe to compare the efficiency of these systems. Direct spread spectrum is the last topic to be examined and simulated to show the advantages of spreading the signal over a wide bandwidth and giving good signal security at the same time.
Publisher: Morgan & Claypool Publishers
ISBN: 1598291629
Category : Digital communications
Languages : en
Pages : 215
Book Description
PSpice for Digital Communications Engineering shows how to simulate digital communication systems and modulation methods using the very powerful Cadence Orcad PSpice version 10.5 suite of software programs. Fourier series and Fourier transform are applied to signals to set the ground work for the modulation techniques introduced in later chapters. Various baseband signals, including duo-binary baseband signaling, are generated and the spectra are examined to detail the unsuitability of these signals for accessing the public switched network. Pulse code modulation and time-division multiplexing circuits are examined and simulated where sampling and quantization noise topics are discussed. We construct a single-channel PCM system from transmission to receiver i.e. end-to-end, and import real speech signals to examine the problems associated with aliasing, sample and hold.Companding is addressed here and we look at the A and mu law characteristics for achieving better signal to quantization noise ratios. Several types of delta modulators are examined and also the concept of time divisionmultiplexing is considered. Multi-level signaling techniques such as QPSK andQAMare analyzed and simulated and 'home-made meters', such as scatter and eye meters, are used to assess the performance of these modulation systems in the presence of noise. The raised-cosine family of filters for shaping data before transmission is examined in depth where bandwidth efficiency and channel capacity is discussed. We plot several graphs in Probe to compare the efficiency of these systems. Direct spread spectrum is the last topic to be examined and simulated to show the advantages of spreading the signal over a wide bandwidth and giving good signal security at the same time.
Radio-Frequency Electronics
Author: Jon B. Hagen
Publisher: Cambridge University Press
ISBN: 052188974X
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
Covering the fundamentals applying to all radio devices, this is a perfect introduction to the subject for students and professionals.
Publisher: Cambridge University Press
ISBN: 052188974X
Category : Technology & Engineering
Languages : en
Pages : 453
Book Description
Covering the fundamentals applying to all radio devices, this is a perfect introduction to the subject for students and professionals.
Starting Digital Signal Processing in Telecommunication Engineering
Author: Tomasz P. Zieliński
Publisher: Springer Nature
ISBN: 3030492567
Category : Technology & Engineering
Languages : en
Pages : 874
Book Description
This hands-on, laboratory driven textbook helps readers understand principles of digital signal processing (DSP) and basics of software-based digital communication, particularly software-defined networks (SDN) and software-defined radio (SDR). In the book only the most important concepts are presented. Each book chapter is an introduction to computer laboratory and is accompanied by complete laboratory exercises and ready-to-go Matlab programs with figures and comments (available at the book webpage and running also in GNU Octave 5.2 with free software packages), showing all or most details of relevant algorithms. Students are tasked to understand programs, modify them, and apply presented concepts to recorded real RF signal or simulated received signals, with modelled transmission condition and hardware imperfections. Teaching is done by showing examples and their modifications to different real-world telecommunication-like applications. The book consists of three parts: introduction to DSP (spectral analysis and digital filtering), introduction to DSP advanced topics (multi-rate, adaptive, model-based and multimedia - speech, audio, video - signal analysis and processing) and introduction to software-defined modern telecommunication systems (SDR technology, analog and digital modulations, single- and multi-carrier systems, channel estimation and correction as well as synchronization issues). Many real signals are processed in the book, in the first part – mainly speech and audio, while in the second part – mainly RF recordings taken from RTL-SDR USB stick and ADALM-PLUTO module, for example captured IQ data of VOR avionics signal, classical FM radio with RDS, digital DAB/DAB+ radio and 4G-LTE digital telephony. Additionally, modelling and simulation of some transmission scenarios are tested in software in the book, in particular TETRA, ADSL and 5G signals. Provides an introduction to digital signal processing and software-based digital communication; Presents a transition from digital signal processing to software-defined telecommunication; Features a suite of pedagogical materials including a laboratory test-bed and computer exercises/experiments.
Publisher: Springer Nature
ISBN: 3030492567
Category : Technology & Engineering
Languages : en
Pages : 874
Book Description
This hands-on, laboratory driven textbook helps readers understand principles of digital signal processing (DSP) and basics of software-based digital communication, particularly software-defined networks (SDN) and software-defined radio (SDR). In the book only the most important concepts are presented. Each book chapter is an introduction to computer laboratory and is accompanied by complete laboratory exercises and ready-to-go Matlab programs with figures and comments (available at the book webpage and running also in GNU Octave 5.2 with free software packages), showing all or most details of relevant algorithms. Students are tasked to understand programs, modify them, and apply presented concepts to recorded real RF signal or simulated received signals, with modelled transmission condition and hardware imperfections. Teaching is done by showing examples and their modifications to different real-world telecommunication-like applications. The book consists of three parts: introduction to DSP (spectral analysis and digital filtering), introduction to DSP advanced topics (multi-rate, adaptive, model-based and multimedia - speech, audio, video - signal analysis and processing) and introduction to software-defined modern telecommunication systems (SDR technology, analog and digital modulations, single- and multi-carrier systems, channel estimation and correction as well as synchronization issues). Many real signals are processed in the book, in the first part – mainly speech and audio, while in the second part – mainly RF recordings taken from RTL-SDR USB stick and ADALM-PLUTO module, for example captured IQ data of VOR avionics signal, classical FM radio with RDS, digital DAB/DAB+ radio and 4G-LTE digital telephony. Additionally, modelling and simulation of some transmission scenarios are tested in software in the book, in particular TETRA, ADSL and 5G signals. Provides an introduction to digital signal processing and software-based digital communication; Presents a transition from digital signal processing to software-defined telecommunication; Features a suite of pedagogical materials including a laboratory test-bed and computer exercises/experiments.
Early FM Radio
Author: Gary L. Frost
Publisher: JHU Press
ISBN: 0801899133
Category : Technology & Engineering
Languages : en
Pages : 207
Book Description
The commonly accepted history of FM radio is one of the twentieth century’s iconic sagas of invention, heroism, and tragedy. Edwin Howard Armstrong created a system of wideband frequency-modulation radio in 1933. The Radio Corporation of America (RCA), convinced that Armstrong’s system threatened its AM empire, failed to develop the new technology and refused to pay Armstrong royalties. Armstrong sued the company at great personal cost. He died despondent, exhausted, and broke. But this account, according to Gary L. Frost, ignores the contributions of scores of other individuals who were involved in the decades-long struggle to realize the potential of FM radio. The first scholar to fully examine recently uncovered evidence from the Armstrong v. RCA lawsuit, Frost offers a thorough revision of the FM story. Frost’s balanced, contextualized approach provides a much-needed corrective to previous accounts. Navigating deftly through the details of a complicated story, he examines the motivations and interactions of the three communities most intimately involved in the development of the technology—Progressive-era amateur radio operators, RCA and Westinghouse engineers, and early FM broadcasters. In the process, Frost demonstrates the tension between competition and collaboration that goes hand in hand with the emergence and refinement of new technologies. Frost's study reconsiders both the social construction of FM radio and the process of technological evolution. Historians of technology, communication, and media will welcome this important reexamination of the canonic story of early FM radio.
Publisher: JHU Press
ISBN: 0801899133
Category : Technology & Engineering
Languages : en
Pages : 207
Book Description
The commonly accepted history of FM radio is one of the twentieth century’s iconic sagas of invention, heroism, and tragedy. Edwin Howard Armstrong created a system of wideband frequency-modulation radio in 1933. The Radio Corporation of America (RCA), convinced that Armstrong’s system threatened its AM empire, failed to develop the new technology and refused to pay Armstrong royalties. Armstrong sued the company at great personal cost. He died despondent, exhausted, and broke. But this account, according to Gary L. Frost, ignores the contributions of scores of other individuals who were involved in the decades-long struggle to realize the potential of FM radio. The first scholar to fully examine recently uncovered evidence from the Armstrong v. RCA lawsuit, Frost offers a thorough revision of the FM story. Frost’s balanced, contextualized approach provides a much-needed corrective to previous accounts. Navigating deftly through the details of a complicated story, he examines the motivations and interactions of the three communities most intimately involved in the development of the technology—Progressive-era amateur radio operators, RCA and Westinghouse engineers, and early FM broadcasters. In the process, Frost demonstrates the tension between competition and collaboration that goes hand in hand with the emergence and refinement of new technologies. Frost's study reconsiders both the social construction of FM radio and the process of technological evolution. Historians of technology, communication, and media will welcome this important reexamination of the canonic story of early FM radio.
Software-Defined Radio for Engineers
Author: Alexander M. Wyglinski
Publisher: Artech House
ISBN: 1630814598
Category : Technology & Engineering
Languages : en
Pages : 375
Book Description
Based on the popular Artech House classic, Digital Communication Systems Engineering with Software-Defined Radio, this book provides a practical approach to quickly learning the software-defined radio (SDR) concepts needed for work in the field. This up-to-date volume guides readers on how to quickly prototype wireless designs using SDR for real-world testing and experimentation. This book explores advanced wireless communication techniques such as OFDM, LTE, WLA, and hardware targeting. Readers will gain an understanding of the core concepts behind wireless hardware, such as the radio frequency front-end, analog-to-digital and digital-to-analog converters, as well as various processing technologies. Moreover, this volume includes chapters on timing estimation, matched filtering, frame synchronization message decoding, and source coding. The orthogonal frequency division multiplexing is explained and details about HDL code generation and deployment are provided. The book concludes with coverage of the WLAN toolbox with OFDM beacon reception and the LTE toolbox with downlink reception. Multiple case studies are provided throughout the book. Both MATLAB and Simulink source code are included to assist readers with their projects in the field.
Publisher: Artech House
ISBN: 1630814598
Category : Technology & Engineering
Languages : en
Pages : 375
Book Description
Based on the popular Artech House classic, Digital Communication Systems Engineering with Software-Defined Radio, this book provides a practical approach to quickly learning the software-defined radio (SDR) concepts needed for work in the field. This up-to-date volume guides readers on how to quickly prototype wireless designs using SDR for real-world testing and experimentation. This book explores advanced wireless communication techniques such as OFDM, LTE, WLA, and hardware targeting. Readers will gain an understanding of the core concepts behind wireless hardware, such as the radio frequency front-end, analog-to-digital and digital-to-analog converters, as well as various processing technologies. Moreover, this volume includes chapters on timing estimation, matched filtering, frame synchronization message decoding, and source coding. The orthogonal frequency division multiplexing is explained and details about HDL code generation and deployment are provided. The book concludes with coverage of the WLAN toolbox with OFDM beacon reception and the LTE toolbox with downlink reception. Multiple case studies are provided throughout the book. Both MATLAB and Simulink source code are included to assist readers with their projects in the field.
Low-Switching Frequency Modulation Schemes for Multi-level Inverters
Author: A. Rakesh Kumar
Publisher: CRC Press
ISBN: 1000332896
Category : Technology & Engineering
Languages : en
Pages : 124
Book Description
Multi-level Inverters (MLIs) are widely used for conversion of DC to AC power. This book provides various low-switching frequency (LSF) modulation schemes (conventional and improved), which can be implemented on MLIs. The LSF modulation schemes are implemented to three different MLI topologies to demonstrate their working and aimed at their application to reader invented MLI topologies. Highlighting the advantages of LSF over high-switching frequency (HSF) modulation schemes, the simulations are carried out using MATLAB®/Simulink along with hardware experiments. The practical application of MLIs to renewable energy sources and electric vehicles is also provided at the end of the book. Aimed at researchers, graduate students in Electric Power Engineering, Power Electronics, this book: Presents detailed overview of most commonly used multi-level invertor topologies. Covers advantages of low-switching over high-switching frequency scheme. Includes an exclusive section dedicated for an improved low-switching modulation scheme. Dedicated chapter on application of renewable energy sources to multi-level invertors and electric vehicles. Explains all the low-switching frequency modulation schemes.
Publisher: CRC Press
ISBN: 1000332896
Category : Technology & Engineering
Languages : en
Pages : 124
Book Description
Multi-level Inverters (MLIs) are widely used for conversion of DC to AC power. This book provides various low-switching frequency (LSF) modulation schemes (conventional and improved), which can be implemented on MLIs. The LSF modulation schemes are implemented to three different MLI topologies to demonstrate their working and aimed at their application to reader invented MLI topologies. Highlighting the advantages of LSF over high-switching frequency (HSF) modulation schemes, the simulations are carried out using MATLAB®/Simulink along with hardware experiments. The practical application of MLIs to renewable energy sources and electric vehicles is also provided at the end of the book. Aimed at researchers, graduate students in Electric Power Engineering, Power Electronics, this book: Presents detailed overview of most commonly used multi-level invertor topologies. Covers advantages of low-switching over high-switching frequency scheme. Includes an exclusive section dedicated for an improved low-switching modulation scheme. Dedicated chapter on application of renewable energy sources to multi-level invertors and electric vehicles. Explains all the low-switching frequency modulation schemes.