Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques

Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques PDF Author: Bart Baesens
Publisher: John Wiley & Sons
ISBN: 1119133122
Category : Computers
Languages : en
Pages : 406

Get Book Here

Book Description
Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution. Early detection is a key factor in mitigating fraud damage, but it involves more specialized techniques than detecting fraud at the more advanced stages. This invaluable guide details both the theory and technical aspects of these techniques, and provides expert insight into streamlining implementation. Coverage includes data gathering, preprocessing, model building, and post-implementation, with comprehensive guidance on various learning techniques and the data types utilized by each. These techniques are effective for fraud detection across industry boundaries, including applications in insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and more, giving you a highly practical framework for fraud prevention. It is estimated that a typical organization loses about 5% of its revenue to fraud every year. More effective fraud detection is possible, and this book describes the various analytical techniques your organization must implement to put a stop to the revenue leak. Examine fraud patterns in historical data Utilize labeled, unlabeled, and networked data Detect fraud before the damage cascades Reduce losses, increase recovery, and tighten security The longer fraud is allowed to go on, the more harm it causes. It expands exponentially, sending ripples of damage throughout the organization, and becomes more and more complex to track, stop, and reverse. Fraud prevention relies on early and effective fraud detection, enabled by the techniques discussed here. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques helps you stop fraud in its tracks, and eliminate the opportunities for future occurrence.

Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques

Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques PDF Author: Bart Baesens
Publisher: John Wiley & Sons
ISBN: 1119133122
Category : Computers
Languages : en
Pages : 406

Get Book Here

Book Description
Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution. Early detection is a key factor in mitigating fraud damage, but it involves more specialized techniques than detecting fraud at the more advanced stages. This invaluable guide details both the theory and technical aspects of these techniques, and provides expert insight into streamlining implementation. Coverage includes data gathering, preprocessing, model building, and post-implementation, with comprehensive guidance on various learning techniques and the data types utilized by each. These techniques are effective for fraud detection across industry boundaries, including applications in insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and more, giving you a highly practical framework for fraud prevention. It is estimated that a typical organization loses about 5% of its revenue to fraud every year. More effective fraud detection is possible, and this book describes the various analytical techniques your organization must implement to put a stop to the revenue leak. Examine fraud patterns in historical data Utilize labeled, unlabeled, and networked data Detect fraud before the damage cascades Reduce losses, increase recovery, and tighten security The longer fraud is allowed to go on, the more harm it causes. It expands exponentially, sending ripples of damage throughout the organization, and becomes more and more complex to track, stop, and reverse. Fraud prevention relies on early and effective fraud detection, enabled by the techniques discussed here. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques helps you stop fraud in its tracks, and eliminate the opportunities for future occurrence.

Fraud Analytics with SAS

Fraud Analytics with SAS PDF Author:
Publisher:
ISBN: 9781642954753
Category :
Languages : en
Pages : 108

Get Book Here

Book Description
SAS software provides many different techniques to monitor in real time and investigate your data, and several groundbreaking papers have been written to demonstrate how to use these techniques. Topics covered illustrate the power of SAS solutions that are available as tools for fraud analytics, highlighting a variety of domains, including money laundering, financial crime, and terrorism. Also available free as a PDF from: sas.com/books.

Fraud Analytics

Fraud Analytics PDF Author: Delena D. Spann
Publisher: John Wiley & Sons
ISBN: 1118282736
Category : Business & Economics
Languages : en
Pages : 176

Get Book Here

Book Description
Proven guidance for expertly using analytics in fraud examinations, financial analysis, auditing and fraud prevention Fraud Analytics thoroughly reveals the elements of analysis that are used in today's fraud examinations, fraud investigations, and financial crime investigations. This valuable resource reviews the types of analysis that should be considered prior to beginning an investigation and explains how to optimally use data mining techniques to detect fraud. Packed with examples and sample cases illustrating pertinent concepts in practice, this book also explores the two major data analytics providers: ACL and IDEA. Looks at elements of analysis used in today's fraud examinations Reveals how to use data mining (fraud analytic) techniques to detect fraud Examines ACL and IDEA as indispensable tools for fraud detection Includes an abundance of sample cases and examples Written by Delena D Spann, Board of Regent (Emeritus) for the Association of Certified Fraud Examiners (ACFE), who currently serves as Advisory Board Member of the Association of Certified Fraud Examiners, Board Member of the Education Task Force of the Association of Certified Anti-Money Laundering Specialists ASIS International (Economic Crime Council) and Advisory Board Member of the Robert Morris University (School of Business), Fraud Analytics equips you with authoritative fraud analysis techniques you can put to use right away.

Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS

Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS PDF Author: Richard C. Zink
Publisher: SAS Institute
ISBN: 1629592331
Category : Computers
Languages : en
Pages : 387

Get Book Here

Book Description
Improve efficiency while reducing costs in clinical trials with centralized monitoring techniques using JMP and SAS. International guidelines recommend that clinical trial data should be actively reviewed or monitored; the well-being of trial participants and the validity and integrity of the final analysis results are at stake. Traditional interpretation of this guidance for pharmaceutical trials has led to extensive on-site monitoring, including 100% source data verification. On-site review is time consuming, expensive (estimated at up to a third of the cost of a clinical trial), prone to error, and limited in its ability to provide insight for data trends across time, patients, and clinical sites. In contrast, risk-based monitoring (RBM) makes use of central computerized review of clinical trial data and site metrics to determine if and when clinical sites should receive more extensive quality review or intervention. Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS presents a practical implementation of methodologies within JMP Clinical for the centralized monitoring of clinical trials. Focused on intermediate users, this book describes analyses for RBM that incorporate and extend the recommendations of TransCelerate Biopharm Inc., methods to detect potential patient-or investigator misconduct, snapshot comparisons to more easily identify new or modified data, and other novel visual and analytical techniques to enhance safety and quality reviews. Further discussion highlights recent regulatory guidance documents on risk-based approaches, addresses the requirements for CDISC data, and describes methods to supplement analyses with data captured external to the study database. Given the interactive, dynamic, and graphical nature of JMP Clinical, any individual from the clinical trial team - including clinicians, statisticians, data managers, programmers, regulatory associates, and monitors - can make use of this book and the numerous examples contained within to streamline, accelerate, and enrich their reviews of clinical trial data. The analytical methods described in Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS enable the clinical trial team to take a proactive approach to data quality and safety to streamline clinical development activities and address shortcomings while the study is ongoing. This book is part of the SAS Press

Analytics in a Big Data World

Analytics in a Big Data World PDF Author: Bart Baesens
Publisher: John Wiley & Sons
ISBN: 1118892747
Category : Business & Economics
Languages : en
Pages : 262

Get Book Here

Book Description
The guide to targeting and leveraging business opportunities using big data & analytics By leveraging big data & analytics, businesses create the potential to better understand, manage, and strategically exploiting the complex dynamics of customer behavior. Analytics in a Big Data World reveals how to tap into the powerful tool of data analytics to create a strategic advantage and identify new business opportunities. Designed to be an accessible resource, this essential book does not include exhaustive coverage of all analytical techniques, instead focusing on analytics techniques that really provide added value in business environments. The book draws on author Bart Baesens' expertise on the topics of big data, analytics and its applications in e.g. credit risk, marketing, and fraud to provide a clear roadmap for organizations that want to use data analytics to their advantage, but need a good starting point. Baesens has conducted extensive research on big data, analytics, customer relationship management, web analytics, fraud detection, and credit risk management, and uses this experience to bring clarity to a complex topic. Includes numerous case studies on risk management, fraud detection, customer relationship management, and web analytics Offers the results of research and the author's personal experience in banking, retail, and government Contains an overview of the visionary ideas and current developments on the strategic use of analytics for business Covers the topic of data analytics in easy-to-understand terms without an undo emphasis on mathematics and the minutiae of statistical analysis For organizations looking to enhance their capabilities via data analytics, this resource is the go-to reference for leveraging data to enhance business capabilities.

Forensic Analytics

Forensic Analytics PDF Author: Mark J. Nigrini
Publisher: John Wiley & Sons
ISBN: 1119585902
Category : Business & Economics
Languages : en
Pages : 549

Get Book Here

Book Description
Become the forensic analytics expert in your organization using effective and efficient data analysis tests to find anomalies, biases, and potential fraud—the updated new edition Forensic Analytics reviews the methods and techniques that forensic accountants can use to detect intentional and unintentional errors, fraud, and biases. This updated second edition shows accountants and auditors how analyzing their corporate or public sector data can highlight transactions, balances, or subsets of transactions or balances in need of attention. These tests are made up of a set of initial high-level overview tests followed by a series of more focused tests. These focused tests use a variety of quantitative methods including Benford’s Law, outlier detection, the detection of duplicates, a comparison to benchmarks, time-series methods, risk-scoring, and sometimes simply statistical logic. The tests in the new edition include the newly developed vector variation score that quantifies the change in an array of data from one period to the next. The goals of the tests are to either produce a small sample of suspicious transactions, a small set of transaction groups, or a risk score related to individual transactions or a group of items. The new edition includes over two hundred figures. Each chapter, where applicable, includes one or more cases showing how the tests under discussion could have detected the fraud or anomalies. The new edition also includes two chapters each describing multi-million-dollar fraud schemes and the insights that can be learned from those examples. These interesting real-world examples help to make the text accessible and understandable for accounting professionals and accounting students without rigorous backgrounds in mathematics and statistics. Emphasizing practical applications, the new edition shows how to use either Excel or Access to run these analytics tests. The book also has some coverage on using Minitab, IDEA, R, and Tableau to run forensic-focused tests. The use of SAS and Power BI rounds out the software coverage. The software screenshots use the latest versions of the software available at the time of writing. This authoritative book: Describes the use of statistically-based techniques including Benford’s Law, descriptive statistics, and the vector variation score to detect errors and anomalies Shows how to run most of the tests in Access and Excel, and other data analysis software packages for a small sample of the tests Applies the tests under review in each chapter to the same purchasing card data from a government entity Includes interesting cases studies throughout that are linked to the tests being reviewed. Includes two comprehensive case studies where data analytics could have detected the frauds before they reached multi-million-dollar levels Includes a continually-updated companion website with the data sets used in the chapters, the queries used in the chapters, extra coverage of some topics or cases, end of chapter questions, and end of chapter cases. Written by a prominent educator and researcher in forensic accounting and auditing, the new edition of Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations is an essential resource for forensic accountants, auditors, comptrollers, fraud investigators, and graduate students.

Bank Fraud

Bank Fraud PDF Author: Revathi Subramanian
Publisher: John Wiley & Sons
ISBN: 0470494395
Category : Business & Economics
Languages : en
Pages : 192

Get Book Here

Book Description
Learn how advances in technology can help curb bank fraud Fraud prevention specialists are grappling with ever-mounting quantities of data, but in today's volatile commercial environment, paying attention to that data is more important than ever. Bank Fraud provides a frank discussion of the attitudes, strategies, and—most importantly—the technology that specialists will need to combat fraud. Fraudulent activity may have increased over the years, but so has the field of data science and the results that can be achieved by applying the right principles, a necessary tool today for financial institutions to protect themselves and their clientele. This resource helps professionals in the financial services industry make the most of data intelligence and uncovers the applicable methods to strengthening defenses against fraudulent behavior. This in-depth treatment of the topic begins with a brief history of fraud detection in banking and definitions of key terms, then discusses the benefits of technology, data sharing, and analysis, along with other in-depth information, including: The challenges of fraud detection in a financial services environment The use of statistics, including effective ways to measure losses per account and ROI by product/initiative The Ten Commandments for tackling fraud and ways to build an effective model for fraud management Bank Fraud offers a compelling narrative that ultimately urges security and fraud prevention professionals to make the most of the data they have so painstakingly gathered. Such professionals shouldn't let their most important intellectual asset—data—go to waste. This book shows you just how to leverage data and the most up-to-date tools, technologies, and methods to thwart fraud at every turn.

Credit Risk Analytics

Credit Risk Analytics PDF Author: Bart Baesens
Publisher: John Wiley & Sons
ISBN: 1119143985
Category : Business & Economics
Languages : en
Pages : 517

Get Book Here

Book Description
The long-awaited, comprehensive guide to practical credit risk modeling Credit Risk Analytics provides a targeted training guide for risk managers looking to efficiently build or validate in-house models for credit risk management. Combining theory with practice, this book walks you through the fundamentals of credit risk management and shows you how to implement these concepts using the SAS credit risk management program, with helpful code provided. Coverage includes data analysis and preprocessing, credit scoring; PD and LGD estimation and forecasting, low default portfolios, correlation modeling and estimation, validation, implementation of prudential regulation, stress testing of existing modeling concepts, and more, to provide a one-stop tutorial and reference for credit risk analytics. The companion website offers examples of both real and simulated credit portfolio data to help you more easily implement the concepts discussed, and the expert author team provides practical insight on this real-world intersection of finance, statistics, and analytics. SAS is the preferred software for credit risk modeling due to its functionality and ability to process large amounts of data. This book shows you how to exploit the capabilities of this high-powered package to create clean, accurate credit risk management models. Understand the general concepts of credit risk management Validate and stress-test existing models Access working examples based on both real and simulated data Learn useful code for implementing and validating models in SAS Despite the high demand for in-house models, there is little comprehensive training available; practitioners are left to comb through piece-meal resources, executive training courses, and consultancies to cobble together the information they need. This book ends the search by providing a comprehensive, focused resource backed by expert guidance. Credit Risk Analytics is the reference every risk manager needs to streamline the modeling process.

Learning SAS by Example

Learning SAS by Example PDF Author: Ron Cody
Publisher: SAS Institute
ISBN: 1635266564
Category : Computers
Languages : en
Pages : 553

Get Book Here

Book Description
Learn to program SAS by example! Learning SAS by Example, A Programmer’s Guide, Second Edition, teaches SAS programming from very basic concepts to more advanced topics. Because most programmers prefer examples rather than reference-type syntax, this book uses short examples to explain each topic. The second edition has brought this classic book on SAS programming up to the latest SAS version, with new chapters that cover topics such as PROC SGPLOT and Perl regular expressions. This book belongs on the shelf (or e-book reader) of anyone who programs in SAS, from those with little programming experience who want to learn SAS to intermediate and even advanced SAS programmers who want to learn new techniques or identify new ways to accomplish existing tasks. In an instructive and conversational tone, author Ron Cody clearly explains each programming technique and then illustrates it with one or more real-life examples, followed by a detailed description of how the program works. The text is divided into four major sections: Getting Started, DATA Step Processing, Presenting and Summarizing Your Data, and Advanced Topics. Subjects addressed include Reading data from external sources Learning details of DATA step programming Subsetting and combining SAS data sets Understanding SAS functions and working with arrays Creating reports with PROC REPORT and PROC TABULATE Getting started with the SAS macro language Leveraging PROC SQL Generating high-quality graphics Using advanced features of user-defined formats and informats Restructuring SAS data sets Working with multiple observations per subject Getting started with Perl regular expressions You can test your knowledge and hone your skills by solving the problems at the end of each chapter.

Heuristics in Analytics

Heuristics in Analytics PDF Author: Carlos Andre Reis Pinheiro
Publisher: John Wiley & Sons
ISBN: 1118347609
Category : Business & Economics
Languages : en
Pages : 256

Get Book Here

Book Description
Employ heuristic adjustments for truly accurate analysis Heuristics in Analytics presents an approach to analysis that accounts for the randomness of business and the competitive marketplace, creating a model that more accurately reflects the scenario at hand. With an emphasis on the importance of proper analytical tools, the book describes the analytical process from exploratory analysis through model developments, to deployments and possible outcomes. Beginning with an introduction to heuristic concepts, readers will find heuristics applied to statistics and probability, mathematics, stochastic, and artificial intelligence models, ending with the knowledge applications that solve business problems. Case studies illustrate the everyday application and implication of the techniques presented, while the heuristic approach is integrated into analytical modeling, graph analysis, text analytics, and more. Robust analytics has become crucial in the corporate environment, and randomness plays an enormous role in business and the competitive marketplace. Failing to account for randomness can steer a model in an entirely wrong direction, negatively affecting the final outcome and potentially devastating the bottom line. Heuristics in Analytics describes how the heuristic characteristics of analysis can be overcome with problem design, math and statistics, helping readers to: Realize just how random the world is, and how unplanned events can affect analysis Integrate heuristic and analytical approaches to modeling and problem solving Discover how graph analysis is applied in real-world scenarios around the globe Apply analytical knowledge to customer behavior, insolvency prevention, fraud detection, and more Understand how text analytics can be applied to increase the business knowledge Every single factor, no matter how large or how small, must be taken into account when modeling a scenario or event—even the unknowns. The presence or absence of even a single detail can dramatically alter eventual outcomes. From raw data to final report, Heuristics in Analytics contains the information analysts need to improve accuracy, and ultimately, predictive, and descriptive power.