Author: Alexander Iomin
Publisher: World Scientific
ISBN: 9813273453
Category : Science
Languages : en
Pages : 246
Book Description
Random walks often provide the underlying mesoscopic mechanism for transport phenomena in physics, chemistry and biology. In particular, anomalous transport in branched structures has attracted considerable attention. Combs are simple caricatures of various types of natural branched structures that belong to the category of loopless graphs. The comb model was introduced to understand anomalous transport in percolation clusters. Comb-like models have been widely adopted to describe kinetic processes in various experimental applications in medical physics and biophysics, chemistry of polymers, semiconductors, and many other interdisciplinary applications.The authors present a random walk description of the transport in specific comb geometries, ranging from simple random walks on comb structures, which provide a geometrical explanation of anomalous diffusion, to more complex types of random walks, such as non-Markovian continuous-time random walks. The simplicity of comb models allows to perform a rigorous analysis and to obtain exact analytical results for various types of random walks and reaction-transport processes.
Fractional Dynamics In Comb-like Structures
Author: Alexander Iomin
Publisher: World Scientific
ISBN: 9813273453
Category : Science
Languages : en
Pages : 246
Book Description
Random walks often provide the underlying mesoscopic mechanism for transport phenomena in physics, chemistry and biology. In particular, anomalous transport in branched structures has attracted considerable attention. Combs are simple caricatures of various types of natural branched structures that belong to the category of loopless graphs. The comb model was introduced to understand anomalous transport in percolation clusters. Comb-like models have been widely adopted to describe kinetic processes in various experimental applications in medical physics and biophysics, chemistry of polymers, semiconductors, and many other interdisciplinary applications.The authors present a random walk description of the transport in specific comb geometries, ranging from simple random walks on comb structures, which provide a geometrical explanation of anomalous diffusion, to more complex types of random walks, such as non-Markovian continuous-time random walks. The simplicity of comb models allows to perform a rigorous analysis and to obtain exact analytical results for various types of random walks and reaction-transport processes.
Publisher: World Scientific
ISBN: 9813273453
Category : Science
Languages : en
Pages : 246
Book Description
Random walks often provide the underlying mesoscopic mechanism for transport phenomena in physics, chemistry and biology. In particular, anomalous transport in branched structures has attracted considerable attention. Combs are simple caricatures of various types of natural branched structures that belong to the category of loopless graphs. The comb model was introduced to understand anomalous transport in percolation clusters. Comb-like models have been widely adopted to describe kinetic processes in various experimental applications in medical physics and biophysics, chemistry of polymers, semiconductors, and many other interdisciplinary applications.The authors present a random walk description of the transport in specific comb geometries, ranging from simple random walks on comb structures, which provide a geometrical explanation of anomalous diffusion, to more complex types of random walks, such as non-Markovian continuous-time random walks. The simplicity of comb models allows to perform a rigorous analysis and to obtain exact analytical results for various types of random walks and reaction-transport processes.
Special Functions Of Fractional Calculus: Applications To Diffusion And Random Search Processes
Author: Trifce Sandev
Publisher: World Scientific
ISBN: 9811252963
Category : Mathematics
Languages : en
Pages : 292
Book Description
This book aims to provide an overview of the special functions of fractional calculus and their applications in diffusion and random search processes. The book contains detailed calculations for various examples of anomalous diffusion, random search and stochastic resetting processes, which can be easily followed by the reader, who will be able to reproduce the obtained results. The book will be intended for advanced undergraduate and graduate students and researchers in physics, mathematics and other natural sciences due to the various examples which will be provided in the book.
Publisher: World Scientific
ISBN: 9811252963
Category : Mathematics
Languages : en
Pages : 292
Book Description
This book aims to provide an overview of the special functions of fractional calculus and their applications in diffusion and random search processes. The book contains detailed calculations for various examples of anomalous diffusion, random search and stochastic resetting processes, which can be easily followed by the reader, who will be able to reproduce the obtained results. The book will be intended for advanced undergraduate and graduate students and researchers in physics, mathematics and other natural sciences due to the various examples which will be provided in the book.
Theory and Applications of Fractional Differential Equations
Author: A.A. Kilbas
Publisher: Elsevier
ISBN: 9780444518323
Category : Mathematics
Languages : en
Pages : 550
Book Description
This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.
Publisher: Elsevier
ISBN: 9780444518323
Category : Mathematics
Languages : en
Pages : 550
Book Description
This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.
Modeling and Analysis of Modern Fluid Problems
Author: Liancun Zheng
Publisher: Academic Press
ISBN: 0128117591
Category : Science
Languages : en
Pages : 482
Book Description
Modeling and Analysis of Modern Fluids helps researchers solve physical problems observed in fluid dynamics and related fields, such as heat and mass transfer, boundary layer phenomena, and numerical heat transfer. These problems are characterized by nonlinearity and large system dimensionality, and 'exact' solutions are impossible to provide using the conventional mixture of theoretical and analytical analysis with purely numerical methods. To solve these complex problems, this work provides a toolkit of established and novel methods drawn from the literature across nonlinear approximation theory. It covers Padé approximation theory, embedded-parameters perturbation, Adomian decomposition, homotopy analysis, modified differential transformation, fractal theory, fractional calculus, fractional differential equations, as well as classical numerical techniques for solving nonlinear partial differential equations. In addition, 3D modeling and analysis are also covered in-depth. - Systematically describes powerful approximation methods to solve nonlinear equations in fluid problems - Includes novel developments in fractional order differential equations with fractal theory applied to fluids - Features new methods, including Homotypy Approximation, embedded-parameter perturbation, and 3D models and analysis
Publisher: Academic Press
ISBN: 0128117591
Category : Science
Languages : en
Pages : 482
Book Description
Modeling and Analysis of Modern Fluids helps researchers solve physical problems observed in fluid dynamics and related fields, such as heat and mass transfer, boundary layer phenomena, and numerical heat transfer. These problems are characterized by nonlinearity and large system dimensionality, and 'exact' solutions are impossible to provide using the conventional mixture of theoretical and analytical analysis with purely numerical methods. To solve these complex problems, this work provides a toolkit of established and novel methods drawn from the literature across nonlinear approximation theory. It covers Padé approximation theory, embedded-parameters perturbation, Adomian decomposition, homotopy analysis, modified differential transformation, fractal theory, fractional calculus, fractional differential equations, as well as classical numerical techniques for solving nonlinear partial differential equations. In addition, 3D modeling and analysis are also covered in-depth. - Systematically describes powerful approximation methods to solve nonlinear equations in fluid problems - Includes novel developments in fractional order differential equations with fractal theory applied to fluids - Features new methods, including Homotypy Approximation, embedded-parameter perturbation, and 3D models and analysis
Fractional Diffusion Equations and Anomalous Diffusion
Author: Luiz Roberto Evangelista
Publisher: Cambridge University Press
ISBN: 1108695035
Category : Science
Languages : en
Pages : 362
Book Description
Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.
Publisher: Cambridge University Press
ISBN: 1108695035
Category : Science
Languages : en
Pages : 362
Book Description
Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.
Fractional Equations and Models
Author: Trifce Sandev
Publisher: Springer Nature
ISBN: 3030296148
Category : Science
Languages : en
Pages : 357
Book Description
Fractional equations and models play an essential part in the description of anomalous dynamics in complex systems. Recent developments in the modeling of various physical, chemical and biological systems have clearly shown that fractional calculus is not just an exotic mathematical theory, as it might have once seemed. The present book seeks to demonstrate this using various examples of equations and models with fractional and generalized operators. Intended for students and researchers in mathematics, physics, chemistry, biology and engineering, it systematically offers a wealth of useful tools for fractional calculus.
Publisher: Springer Nature
ISBN: 3030296148
Category : Science
Languages : en
Pages : 357
Book Description
Fractional equations and models play an essential part in the description of anomalous dynamics in complex systems. Recent developments in the modeling of various physical, chemical and biological systems have clearly shown that fractional calculus is not just an exotic mathematical theory, as it might have once seemed. The present book seeks to demonstrate this using various examples of equations and models with fractional and generalized operators. Intended for students and researchers in mathematics, physics, chemistry, biology and engineering, it systematically offers a wealth of useful tools for fractional calculus.
An Introduction to Anomalous Diffusion and Relaxation
Author: Luiz Roberto Evangelista
Publisher: Springer Nature
ISBN: 3031181506
Category : Science
Languages : en
Pages : 411
Book Description
This book provides a contemporary treatment of the problems related to anomalous diffusion and anomalous relaxation. It collects and promotes unprecedented applications dealing with diffusion problems and surface effects, adsorption-desorption phenomena, memory effects, reaction-diffusion equations, and relaxation in constrained structures of classical and quantum processes. The topics covered by the book are of current interest and comprehensive range, including concepts in diffusion and stochastic physics, random walks, and elements of fractional calculus. They are accompanied by a detailed exposition of the mathematical techniques intended to serve the reader as a tool to handle modern boundary value problems. This self-contained text can be used as a reference source for graduates and researchers working in applied mathematics, physics of complex systems and fluids, condensed matter physics, statistical physics, chemistry, chemical and electrical engineering, biology, and many others.
Publisher: Springer Nature
ISBN: 3031181506
Category : Science
Languages : en
Pages : 411
Book Description
This book provides a contemporary treatment of the problems related to anomalous diffusion and anomalous relaxation. It collects and promotes unprecedented applications dealing with diffusion problems and surface effects, adsorption-desorption phenomena, memory effects, reaction-diffusion equations, and relaxation in constrained structures of classical and quantum processes. The topics covered by the book are of current interest and comprehensive range, including concepts in diffusion and stochastic physics, random walks, and elements of fractional calculus. They are accompanied by a detailed exposition of the mathematical techniques intended to serve the reader as a tool to handle modern boundary value problems. This self-contained text can be used as a reference source for graduates and researchers working in applied mathematics, physics of complex systems and fluids, condensed matter physics, statistical physics, chemistry, chemical and electrical engineering, biology, and many others.
Brain Functional Analysis and Brain-like Intelligence
Author: Shihui Ying
Publisher: Frontiers Media SA
ISBN: 2832546153
Category : Science
Languages : en
Pages : 147
Book Description
Publisher: Frontiers Media SA
ISBN: 2832546153
Category : Science
Languages : en
Pages : 147
Book Description
Handbook of Applications of Chaos Theory
Author: Christos H. Skiadas
Publisher: CRC Press
ISBN: 1466590440
Category : Mathematics
Languages : en
Pages : 934
Book Description
In addition to explaining and modeling unexplored phenomena in nature and society, chaos uses vital parts of nonlinear dynamical systems theory and established chaotic theory to open new frontiers and fields of study. Handbook of Applications of Chaos Theory covers the main parts of chaos theory along with various applications to diverse areas. Expert contributors from around the world show how chaos theory is used to model unexplored cases and stimulate new applications. Accessible to scientists, engineers, and practitioners in a variety of fields, the book discusses the intermittency route to chaos, evolutionary dynamics and deterministic chaos, and the transition to phase synchronization chaos. It presents important contributions on strange attractors, self-exciting and hidden attractors, stability theory, Lyapunov exponents, and chaotic analysis. It explores the state of the art of chaos in plasma physics, plasma harmonics, and overtone coupling. It also describes flows and turbulence, chaotic interference versus decoherence, and an application of microwave networks to the simulation of quantum graphs. The book proceeds to give a detailed presentation of the chaotic, rogue, and noisy optical dissipative solitons; parhelic-like circle and chaotic light scattering; and interesting forms of the hyperbolic prism, the Poincaré disc, and foams. It also covers numerous application areas, from the analysis of blood pressure data and clinical digital pathology to chaotic pattern recognition to economics to musical arts and research.
Publisher: CRC Press
ISBN: 1466590440
Category : Mathematics
Languages : en
Pages : 934
Book Description
In addition to explaining and modeling unexplored phenomena in nature and society, chaos uses vital parts of nonlinear dynamical systems theory and established chaotic theory to open new frontiers and fields of study. Handbook of Applications of Chaos Theory covers the main parts of chaos theory along with various applications to diverse areas. Expert contributors from around the world show how chaos theory is used to model unexplored cases and stimulate new applications. Accessible to scientists, engineers, and practitioners in a variety of fields, the book discusses the intermittency route to chaos, evolutionary dynamics and deterministic chaos, and the transition to phase synchronization chaos. It presents important contributions on strange attractors, self-exciting and hidden attractors, stability theory, Lyapunov exponents, and chaotic analysis. It explores the state of the art of chaos in plasma physics, plasma harmonics, and overtone coupling. It also describes flows and turbulence, chaotic interference versus decoherence, and an application of microwave networks to the simulation of quantum graphs. The book proceeds to give a detailed presentation of the chaotic, rogue, and noisy optical dissipative solitons; parhelic-like circle and chaotic light scattering; and interesting forms of the hyperbolic prism, the Poincaré disc, and foams. It also covers numerous application areas, from the analysis of blood pressure data and clinical digital pathology to chaotic pattern recognition to economics to musical arts and research.
Quantum Processes in Biology
Author: José Antonio Fornés
Publisher: Springer Nature
ISBN: 3031580788
Category :
Languages : en
Pages : 220
Book Description
Publisher: Springer Nature
ISBN: 3031580788
Category :
Languages : en
Pages : 220
Book Description