The Geometry of Fractal Sets

The Geometry of Fractal Sets PDF Author: K. J. Falconer
Publisher: Cambridge University Press
ISBN: 9780521337052
Category : Mathematics
Languages : en
Pages : 184

Get Book Here

Book Description
A mathematical study of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Considers questions of local density, the existence of tangents of such sets as well as the dimensional properties of their projections in various directions.

The Geometry of Fractal Sets

The Geometry of Fractal Sets PDF Author: K. J. Falconer
Publisher: Cambridge University Press
ISBN: 9780521337052
Category : Mathematics
Languages : en
Pages : 184

Get Book Here

Book Description
A mathematical study of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Considers questions of local density, the existence of tangents of such sets as well as the dimensional properties of their projections in various directions.

Fractal Worlds

Fractal Worlds PDF Author: Michael Frame
Publisher: Yale University Press
ISBN: 030019787X
Category : Mathematics
Languages : en
Pages : 536

Get Book Here

Book Description
In this essential primer, mathematician Michael Frame, a close collaborator with Benoit Mandelbrot, the founder of fractal geometry, and poet Amelia Urry explore the amazing world of fractals as they appear in nature, art, medicine, and technology

Fractal River Basins

Fractal River Basins PDF Author: Ignacio Rodríguez-Iturbe
Publisher: Cambridge University Press
ISBN: 9780521004053
Category : Nature
Languages : en
Pages : 574

Get Book Here

Book Description
This book provides a theoretical basis to the arrangement of river basins and networks.

The Fractal Geometry of Nature

The Fractal Geometry of Nature PDF Author: Benoit Mandelbrot
Publisher: Echo Point Books & Media, LLC
ISBN: 9781648370410
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Written in a style that is accessible to a wide audience, The Fractal Geometry of Nature inspired popular interest in this emerging field. Mandelbrot's unique style, and rich illustrations will inspire readers of all backgrounds.

Fractal Physiology

Fractal Physiology PDF Author: James B Bassingthwaighte
Publisher: Springer
ISBN: 1461475724
Category : Medical
Languages : en
Pages : 371

Get Book Here

Book Description
I know that most men, including those at ease with the problems of the greatest complexity, can seldom accept even the simplest and most obvious truth if it be such as would oblige them to admit the falsity of conclusions which they have delighted in explaining to colleagues, which they have proudly taught to others, and which they have woven, thread by thread, into the fabric of their lives. Joseph Ford quoting Tolstoy (Gleick, 1987) We are used to thinking that natural objects have a certain form and that this form is determined by a characteristic scale. If we magnify the object beyond this scale, no new features are revealed. To correctly measure the properties of the object, such as length, area, or volume, we measure it at a resolution finer than the characteristic scale of the object. We expect that the value we measure has a unique value for the object. This simple idea is the basis of the calculus, Euclidean geometry, and the theory of measurement. However, Mandelbrot (1977, 1983) brought to the world's attention that many natural objects simply do not have this preconceived form. Many of the structures in space and processes in time of living things have a very different form. Living things have structures in space and fluctuations in time that cannot be characterized by one spatial or temporal scale. They extend over many spatial or temporal scales.

Fractal Control and Its Applications

Fractal Control and Its Applications PDF Author: Shu Tang Liu
Publisher: Springer Nature
ISBN: 9811554595
Category : Technology & Engineering
Languages : en
Pages : 364

Get Book Here

Book Description
The book focuses on fractal control and applications in various fields. Fractal phenomena occur in nonlinear models, and since the behaviors depicted by fractals need to be controlled in practical applications, an understanding of fractal control is necessary. This book introduces readers to Julia set fractals and Mandelbrot set fractals in a range of models, such as physical systems, biological systems and SIRS models, and discusses controllers designed to control these fractals. Further, it demonstrates how the fractal dimension can be calculated in order to describe the complexity of various systems.Offering a comprehensive and systematic overview of the practical issues in fractal control, this book is a valuable resource for readers interested in practical solutions in fractal control. It will also appeal to researchers, engineers, and graduate students in fields of fractal control and applications, as well as chaos control and applications.

Fractal Surfaces

Fractal Surfaces PDF Author: John C. Russ
Publisher: Springer Science & Business Media
ISBN: 1489925783
Category : Science
Languages : en
Pages : 313

Get Book Here

Book Description
The author integrates discussions of fractal geometry, surface modeling techniques, and applications to real world problems to provide a comprehensive, accessible overview of the field. His work will equip researchers with the basic tools for measurement and interpretation of data, stimulating more work on these problems and, perhaps, leading to an understanding of the reasons that Nature has adopted this geometry to shape much of our world.

Fractal Concepts in Condensed Matter Physics

Fractal Concepts in Condensed Matter Physics PDF Author: Tsuneyoshi Nakayama
Publisher: Springer Science & Business Media
ISBN: 3662051931
Category : Science
Languages : en
Pages : 216

Get Book Here

Book Description
Concisely and clearly written by two foremost scientists, this book provides a self-contained introduction to the basic concepts of fractals and demonstrates their use in a range of topics. The authors’ unified description of different dynamic problems makes the book extremely accessible.

Fractals and Fractional Calculus in Continuum Mechanics

Fractals and Fractional Calculus in Continuum Mechanics PDF Author: Alberto Carpinteri
Publisher: Springer
ISBN: 3709126649
Category : Technology & Engineering
Languages : en
Pages : 352

Get Book Here

Book Description
The book is characterized by the illustration of cases of fractal, self-similar and multi-scale structures taken from the mechanics of solid and porous materials, which have a technical interest. In addition, an accessible and self-consistent treatment of the mathematical technique of fractional calculus is provided, avoiding useless complications.

Fractal and Multifractal Facets in the Structure and Dynamics of Physiological Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated Cyber-Physical Platforms

Fractal and Multifractal Facets in the Structure and Dynamics of Physiological Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated Cyber-Physical Platforms PDF Author: Paul Bogdan
Publisher: Frontiers Media SA
ISBN: 2889635317
Category :
Languages : en
Pages : 180

Get Book Here

Book Description
Widespread chronic diseases (e.g., heart diseases, diabetes and its complications, stroke, cancer, brain diseases) constitute a significant cause of rising healthcare costs and pose a significant burden on quality-of-life for many individuals. Despite the increased need for smart healthcare sensing systems that monitor / measure patients’ body balance, there is no coherent theory that facilitates the modeling of human physiological processes and the design and optimization of future healthcare cyber-physical systems (HCPS). The HCPS are expected to mine the patient’s physiological state based on available continuous sensing, quantify risk indices corresponding to the onset of abnormality, signal the need for critical medical intervention in real-time by communicating patient’s medical information via a network from individual to hospital, and most importantly control (actuate) vital health signals (e.g., cardiac pacing, insulin level, blood pressure) within personalized homeostasis. To prevent health complications, maintain good health and/or avoid fatal conditions calls for a cross-disciplinary approach to HCPS design where recent statistical-physics inspired discoveries done by collaborations between physicists and physicians are shared and enriched by applied mathematicians, control theorists and bioengineers. This critical and urgent multi-disciplinary approach has to unify the current state of knowledge and address the following fundamental challenges: One fundamental challenge is represented by the need to mine and understand the complexity of the structure and dynamics of the physiological systems in healthy homeostasis and associated with a disease (such as diabetes). Along the same lines, we need rigorous mathematical techniques for identifying the interactions between integrated physiologic systems and understanding their role within the overall networking architecture of healthy dynamics. Another fundamental challenge calls for a deeper understanding of stochastic feedback and variability in biological systems and physiological processes, in particular, and for deciphering their implications not only on how to mathematically characterize homeostasis, but also on defining new control strategies that are accounting for intra- and inter-patient specificity – a truly mathematical approach to personalized medicine. Numerous recent studies have demonstrated that heart rate variability, blood glucose, neural signals and other interdependent physiological processes demonstrate fractal and non-stationary characteristics. Exploiting statistical physics concepts, numerous recent research studies demonstrated that healthy human physiological processes exhibit complex critical phenomena with deep implications for how homeostasis should be defined and how control strategies should be developed when prolonged abnormal deviations are observed. In addition, several efforts have tried to connect these fractal characteristics with new optimal control strategies that implemented in medical devices such as pacemakers and artificial pancreas could improve the efficiency of medical therapies and the quality-of-life of patients but neglecting the overall networking architecture of human physiology. Consequently, rigorously analyzing the complexity and dynamics of physiological processes (e.g., blood glucose and its associated implications and interdependencies with other physiological processes) represents a fundamental step towards providing a quantifiable (mathematical) definition of homeostasis in the context of critical phenomena, understanding the onset of chronic diseases, predicting deviations from healthy homeostasis and developing new more efficient medical therapies that carefully account for the physiological complexity, intra- and inter-patient variability, rather than ignoring it. This Research Topic aims to open a synergetic and timely effort between physicians, physicists, applied mathematicians, signal processing, bioengineering and biomedical experts to organize the state of knowledge in mining the complexity of physiological systems and their implications for constructing more accurate mathematical models and designing QoL-aware control strategies implemented in the new generation of HCPS devices. By bringing together multi-disciplinary researchers seeking to understand the many aspects of human physiology and its complexity, we aim at enabling a paradigm shift in designing future medical devices that translates mathematical characteristics in predictable mathematical models quantifying not only the degree of homeostasis, but also providing fundamentally new control strategies within the personalized medicine era.