Author: Amos R. Omondi
Publisher: Springer Science & Business Media
ISBN: 0387284877
Category : Technology & Engineering
Languages : en
Pages : 365
Book Description
During the 1980s and early 1990s there was signi?cant work in the design and implementation of hardware neurocomputers. Nevertheless, most of these efforts may be judged to have been unsuccessful: at no time have have ha- ware neurocomputers been in wide use. This lack of success may be largely attributed to the fact that earlier work was almost entirely aimed at developing custom neurocomputers, based on ASIC technology, but for such niche - eas this technology was never suf?ciently developed or competitive enough to justify large-scale adoption. On the other hand, gate-arrays of the period m- tioned were never large enough nor fast enough for serious arti?cial-neur- network (ANN) applications. But technology has now improved: the capacity and performance of current FPGAs are such that they present a much more realistic alternative. Consequently neurocomputers based on FPGAs are now a much more practical proposition than they have been in the past. This book summarizes some work towards this goal and consists of 12 papers that were selected, after review, from a number of submissions. The book is nominally divided into three parts: Chapters 1 through 4 deal with foundational issues; Chapters 5 through 11 deal with a variety of implementations; and Chapter 12 looks at the lessons learned from a large-scale project and also reconsiders design issues in light of current and future technology.
FPGA Implementations of Neural Networks
Author: Amos R. Omondi
Publisher: Springer Science & Business Media
ISBN: 0387284877
Category : Technology & Engineering
Languages : en
Pages : 365
Book Description
During the 1980s and early 1990s there was signi?cant work in the design and implementation of hardware neurocomputers. Nevertheless, most of these efforts may be judged to have been unsuccessful: at no time have have ha- ware neurocomputers been in wide use. This lack of success may be largely attributed to the fact that earlier work was almost entirely aimed at developing custom neurocomputers, based on ASIC technology, but for such niche - eas this technology was never suf?ciently developed or competitive enough to justify large-scale adoption. On the other hand, gate-arrays of the period m- tioned were never large enough nor fast enough for serious arti?cial-neur- network (ANN) applications. But technology has now improved: the capacity and performance of current FPGAs are such that they present a much more realistic alternative. Consequently neurocomputers based on FPGAs are now a much more practical proposition than they have been in the past. This book summarizes some work towards this goal and consists of 12 papers that were selected, after review, from a number of submissions. The book is nominally divided into three parts: Chapters 1 through 4 deal with foundational issues; Chapters 5 through 11 deal with a variety of implementations; and Chapter 12 looks at the lessons learned from a large-scale project and also reconsiders design issues in light of current and future technology.
Publisher: Springer Science & Business Media
ISBN: 0387284877
Category : Technology & Engineering
Languages : en
Pages : 365
Book Description
During the 1980s and early 1990s there was signi?cant work in the design and implementation of hardware neurocomputers. Nevertheless, most of these efforts may be judged to have been unsuccessful: at no time have have ha- ware neurocomputers been in wide use. This lack of success may be largely attributed to the fact that earlier work was almost entirely aimed at developing custom neurocomputers, based on ASIC technology, but for such niche - eas this technology was never suf?ciently developed or competitive enough to justify large-scale adoption. On the other hand, gate-arrays of the period m- tioned were never large enough nor fast enough for serious arti?cial-neur- network (ANN) applications. But technology has now improved: the capacity and performance of current FPGAs are such that they present a much more realistic alternative. Consequently neurocomputers based on FPGAs are now a much more practical proposition than they have been in the past. This book summarizes some work towards this goal and consists of 12 papers that were selected, after review, from a number of submissions. The book is nominally divided into three parts: Chapters 1 through 4 deal with foundational issues; Chapters 5 through 11 deal with a variety of implementations; and Chapter 12 looks at the lessons learned from a large-scale project and also reconsiders design issues in light of current and future technology.
Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
Author: Jonathan Greene
Publisher:
ISBN: 9781450343541
Category :
Languages : en
Pages :
Book Description
FPGA '17: The 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays Feb 22, 2017-Feb 24, 2017 Monterey, USA. You can view more information about this proceeding and all of ACM�s other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.
Publisher:
ISBN: 9781450343541
Category :
Languages : en
Pages :
Book Description
FPGA '17: The 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays Feb 22, 2017-Feb 24, 2017 Monterey, USA. You can view more information about this proceeding and all of ACM�s other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.
Efficient Processing of Deep Neural Networks
Author: Vivienne Sze
Publisher: Springer Nature
ISBN: 3031017668
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Publisher: Springer Nature
ISBN: 3031017668
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Field-Programmable Logic and Applications
Author: Peter Y.K. Cheung
Publisher: Springer Science & Business Media
ISBN: 3540408223
Category : Computers
Languages : en
Pages : 1204
Book Description
This book constitutes the refereed proceedings of the 13th International Conference on Field-Programmable Logic and Applications, FPL 2003, held in Lisbon, Portugal in September 2003. The 90 revised full papers and 56 revised poster papers presented were carefully reviewed and selected from 216 submissions. The papers are organized in topical sections on technologies and trends, communications applications, high level design tools, reconfigurable architecture, cryptographic applications, multi-context FPGAs, low-power issues, run-time reconfiguration, compilation tools, asynchronous techniques, bio-related applications, codesign, reconfigurable fabrics, image processing applications, SAT techniques, application-specific architectures, DSP applications, dynamic reconfiguration, SoC architectures, emulation, cache design, arithmetic, bio-inspired design, SoC design, cellular applications, fault analysis, and network applications.
Publisher: Springer Science & Business Media
ISBN: 3540408223
Category : Computers
Languages : en
Pages : 1204
Book Description
This book constitutes the refereed proceedings of the 13th International Conference on Field-Programmable Logic and Applications, FPL 2003, held in Lisbon, Portugal in September 2003. The 90 revised full papers and 56 revised poster papers presented were carefully reviewed and selected from 216 submissions. The papers are organized in topical sections on technologies and trends, communications applications, high level design tools, reconfigurable architecture, cryptographic applications, multi-context FPGAs, low-power issues, run-time reconfiguration, compilation tools, asynchronous techniques, bio-related applications, codesign, reconfigurable fabrics, image processing applications, SAT techniques, application-specific architectures, DSP applications, dynamic reconfiguration, SoC architectures, emulation, cache design, arithmetic, bio-inspired design, SoC design, cellular applications, fault analysis, and network applications.
TinyML
Author: Pete Warden
Publisher: O'Reilly Media
ISBN: 1492052019
Category : Computers
Languages : en
Pages : 504
Book Description
Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size
Publisher: O'Reilly Media
ISBN: 1492052019
Category : Computers
Languages : en
Pages : 504
Book Description
Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size
Applied Reconfigurable Computing. Architectures, Tools, and Applications
Author: Fernando Rincón
Publisher: Springer Nature
ISBN: 3030445348
Category : Computers
Languages : en
Pages : 408
Book Description
This book constitutes the proceedings of the 16th International Symposium on Applied Reconfigurable Computing, ARC 2020, held in Toledo, Spain, in April 2020. The 18 full papers and 11 poster presentations presented in this volume were carefully reviewed and selected from 40 submissions. The papers are organized in the following topical sections: design methods & tools; design space exploration & estimation techniques; high-level synthesis; architectures; applications.
Publisher: Springer Nature
ISBN: 3030445348
Category : Computers
Languages : en
Pages : 408
Book Description
This book constitutes the proceedings of the 16th International Symposium on Applied Reconfigurable Computing, ARC 2020, held in Toledo, Spain, in April 2020. The 18 full papers and 11 poster presentations presented in this volume were carefully reviewed and selected from 40 submissions. The papers are organized in the following topical sections: design methods & tools; design space exploration & estimation techniques; high-level synthesis; architectures; applications.
Artificial Intelligence and Hardware Accelerators
Author: Ashutosh Mishra
Publisher: Springer Nature
ISBN: 3031221702
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
This book explores new methods, architectures, tools, and algorithms for Artificial Intelligence Hardware Accelerators. The authors have structured the material to simplify readers’ journey toward understanding the aspects of designing hardware accelerators, complex AI algorithms, and their computational requirements, along with the multifaceted applications. Coverage focuses broadly on the hardware aspects of training, inference, mobile devices, and autonomous vehicles (AVs) based AI accelerators
Publisher: Springer Nature
ISBN: 3031221702
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
This book explores new methods, architectures, tools, and algorithms for Artificial Intelligence Hardware Accelerators. The authors have structured the material to simplify readers’ journey toward understanding the aspects of designing hardware accelerators, complex AI algorithms, and their computational requirements, along with the multifaceted applications. Coverage focuses broadly on the hardware aspects of training, inference, mobile devices, and autonomous vehicles (AVs) based AI accelerators
Arithmetic Complexity of Computations
Author: Shmuel Winograd
Publisher: SIAM
ISBN: 9781611970364
Category : Mathematics
Languages : en
Pages : 96
Book Description
Focuses on finding the minimum number of arithmetic operations needed to perform the computation and on finding a better algorithm when improvement is possible. The author concentrates on that class of problems concerned with computing a system of bilinear forms. Results that lead to applications in the area of signal processing are emphasized, since (1) even a modest reduction in the execution time of signal processing problems could have practical significance; (2) results in this area are relatively new and are scattered in journal articles; and (3) this emphasis indicates the flavor of complexity of computation.
Publisher: SIAM
ISBN: 9781611970364
Category : Mathematics
Languages : en
Pages : 96
Book Description
Focuses on finding the minimum number of arithmetic operations needed to perform the computation and on finding a better algorithm when improvement is possible. The author concentrates on that class of problems concerned with computing a system of bilinear forms. Results that lead to applications in the area of signal processing are emphasized, since (1) even a modest reduction in the execution time of signal processing problems could have practical significance; (2) results in this area are relatively new and are scattered in journal articles; and (3) this emphasis indicates the flavor of complexity of computation.
Accelerators for Convolutional Neural Networks
Author: Arslan Munir
Publisher: John Wiley & Sons
ISBN: 1394171889
Category : Computers
Languages : en
Pages : 308
Book Description
Accelerators for Convolutional Neural Networks Comprehensive and thorough resource exploring different types of convolutional neural networks and complementary accelerators Accelerators for Convolutional Neural Networks provides basic deep learning knowledge and instructive content to build up convolutional neural network (CNN) accelerators for the Internet of things (IoT) and edge computing practitioners, elucidating compressive coding for CNNs, presenting a two-step lossless input feature maps compression method, discussing arithmetic coding -based lossless weights compression method and the design of an associated decoding method, describing contemporary sparse CNNs that consider sparsity in both weights and activation maps, and discussing hardware/software co-design and co-scheduling techniques that can lead to better optimization and utilization of the available hardware resources for CNN acceleration. The first part of the book provides an overview of CNNs along with the composition and parameters of different contemporary CNN models. Later chapters focus on compressive coding for CNNs and the design of dense CNN accelerators. The book also provides directions for future research and development for CNN accelerators. Other sample topics covered in Accelerators for Convolutional Neural Networks include: How to apply arithmetic coding and decoding with range scaling for lossless weight compression for 5-bit CNN weights to deploy CNNs in extremely resource-constrained systems State-of-the-art research surrounding dense CNN accelerators, which are mostly based on systolic arrays or parallel multiply-accumulate (MAC) arrays iMAC dense CNN accelerator, which combines image-to-column (im2col) and general matrix multiplication (GEMM) hardware acceleration Multi-threaded, low-cost, log-based processing element (PE) core, instances of which are stacked in a spatial grid to engender NeuroMAX dense accelerator Sparse-PE, a multi-threaded and flexible CNN PE core that exploits sparsity in both weights and activation maps, instances of which can be stacked in a spatial grid for engendering sparse CNN accelerators For researchers in AI, computer vision, computer architecture, and embedded systems, along with graduate and senior undergraduate students in related programs of study, Accelerators for Convolutional Neural Networks is an essential resource to understanding the many facets of the subject and relevant applications.
Publisher: John Wiley & Sons
ISBN: 1394171889
Category : Computers
Languages : en
Pages : 308
Book Description
Accelerators for Convolutional Neural Networks Comprehensive and thorough resource exploring different types of convolutional neural networks and complementary accelerators Accelerators for Convolutional Neural Networks provides basic deep learning knowledge and instructive content to build up convolutional neural network (CNN) accelerators for the Internet of things (IoT) and edge computing practitioners, elucidating compressive coding for CNNs, presenting a two-step lossless input feature maps compression method, discussing arithmetic coding -based lossless weights compression method and the design of an associated decoding method, describing contemporary sparse CNNs that consider sparsity in both weights and activation maps, and discussing hardware/software co-design and co-scheduling techniques that can lead to better optimization and utilization of the available hardware resources for CNN acceleration. The first part of the book provides an overview of CNNs along with the composition and parameters of different contemporary CNN models. Later chapters focus on compressive coding for CNNs and the design of dense CNN accelerators. The book also provides directions for future research and development for CNN accelerators. Other sample topics covered in Accelerators for Convolutional Neural Networks include: How to apply arithmetic coding and decoding with range scaling for lossless weight compression for 5-bit CNN weights to deploy CNNs in extremely resource-constrained systems State-of-the-art research surrounding dense CNN accelerators, which are mostly based on systolic arrays or parallel multiply-accumulate (MAC) arrays iMAC dense CNN accelerator, which combines image-to-column (im2col) and general matrix multiplication (GEMM) hardware acceleration Multi-threaded, low-cost, log-based processing element (PE) core, instances of which are stacked in a spatial grid to engender NeuroMAX dense accelerator Sparse-PE, a multi-threaded and flexible CNN PE core that exploits sparsity in both weights and activation maps, instances of which can be stacked in a spatial grid for engendering sparse CNN accelerators For researchers in AI, computer vision, computer architecture, and embedded systems, along with graduate and senior undergraduate students in related programs of study, Accelerators for Convolutional Neural Networks is an essential resource to understanding the many facets of the subject and relevant applications.
Computational Intelligence And Image Processing In Medical Applications
Author: Chi Hau Chen
Publisher: World Scientific
ISBN: 9811257469
Category : Computers
Languages : en
Pages : 336
Book Description
In recent years, there have been significant progress in computational intelligence and image processing with machine learning and deep learning as important components of modern artificial intelligence. All these progresses face challenges in dealing with Covid-19 pandemic for detection and treatment.This comprehensive compendium provides not only updated advances of computational intelligence and image processing in the detection and treatment of Covid-19, but also other medical applications such as in cancer detection and cardiovascular diseases, etc. More traditional approaches such as 2D segmentation and 3D reconstruction are included.The useful reference text is an updated version of the edited title, Computer Vision in Medical Imaging (World Scientific, 2014) and its companion volume, Frontiers of Medical Imaging (World Scientific, 2015). The book is written for engineers, scientists and the medical community to meet the increased challenges in medical applications.
Publisher: World Scientific
ISBN: 9811257469
Category : Computers
Languages : en
Pages : 336
Book Description
In recent years, there have been significant progress in computational intelligence and image processing with machine learning and deep learning as important components of modern artificial intelligence. All these progresses face challenges in dealing with Covid-19 pandemic for detection and treatment.This comprehensive compendium provides not only updated advances of computational intelligence and image processing in the detection and treatment of Covid-19, but also other medical applications such as in cancer detection and cardiovascular diseases, etc. More traditional approaches such as 2D segmentation and 3D reconstruction are included.The useful reference text is an updated version of the edited title, Computer Vision in Medical Imaging (World Scientific, 2014) and its companion volume, Frontiers of Medical Imaging (World Scientific, 2015). The book is written for engineers, scientists and the medical community to meet the increased challenges in medical applications.