Fourier Series

Fourier Series PDF Author: R.E. Edwards
Publisher: Springer Science & Business Media
ISBN: 1461262089
Category : Mathematics
Languages : en
Pages : 230

Get Book Here

Book Description
The principal aim in writing this book has been to provide an intro duction, barely more, to some aspects of Fourier series and related topics in which a liberal use is made of modem techniques and which guides the reader toward some of the problems of current interest in harmonic analysis generally. The use of modem concepts and techniques is, in fact, as wide spread as is deemed to be compatible with the desire that the book shall be useful to senior undergraduates and beginning graduate students, for whom it may perhaps serve as preparation for Rudin's Harmonic Analysis on Groups and the promised second volume of Hewitt and Ross's Abstract Harmonic Analysis. The emphasis on modem techniques and outlook has affected not only the type of arguments favored, but also to a considerable extent the choice of material. Above all, it has led to a minimal treatment of pointwise con vergence and summability: as is argued in Chapter 1, Fourier series are not necessarily seen in their best or most natural role through pointwise-tinted spectacles. Moreover, the famous treatises by Zygmund and by Baryon trigonometric series cover these aspects in great detail, wl:tile leaving some gaps in the presentation of the modern viewpoint; the same is true of the more elementary account given by Tolstov. Likewise, and again for reasons discussed in Chapter 1, trigonometric series in general form no part of the program attempted.

Fourier Series

Fourier Series PDF Author: R.E. Edwards
Publisher: Springer Science & Business Media
ISBN: 1461262089
Category : Mathematics
Languages : en
Pages : 230

Get Book Here

Book Description
The principal aim in writing this book has been to provide an intro duction, barely more, to some aspects of Fourier series and related topics in which a liberal use is made of modem techniques and which guides the reader toward some of the problems of current interest in harmonic analysis generally. The use of modem concepts and techniques is, in fact, as wide spread as is deemed to be compatible with the desire that the book shall be useful to senior undergraduates and beginning graduate students, for whom it may perhaps serve as preparation for Rudin's Harmonic Analysis on Groups and the promised second volume of Hewitt and Ross's Abstract Harmonic Analysis. The emphasis on modem techniques and outlook has affected not only the type of arguments favored, but also to a considerable extent the choice of material. Above all, it has led to a minimal treatment of pointwise con vergence and summability: as is argued in Chapter 1, Fourier series are not necessarily seen in their best or most natural role through pointwise-tinted spectacles. Moreover, the famous treatises by Zygmund and by Baryon trigonometric series cover these aspects in great detail, wl:tile leaving some gaps in the presentation of the modern viewpoint; the same is true of the more elementary account given by Tolstov. Likewise, and again for reasons discussed in Chapter 1, trigonometric series in general form no part of the program attempted.

Fourier Series, a Modern Introduction

Fourier Series, a Modern Introduction PDF Author: Robert E. Edwards
Publisher:
ISBN:
Category : Fourier series
Languages : en
Pages : 242

Get Book Here

Book Description


A First Course in Fourier Analysis

A First Course in Fourier Analysis PDF Author: David W. Kammler
Publisher: Cambridge University Press
ISBN: 1139469037
Category : Mathematics
Languages : en
Pages : 39

Get Book Here

Book Description
This book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDEs, probability, diffraction, musical tones, and wavelets. The book contains an unusually complete presentation of the Fourier transform calculus. It uses concepts from calculus to present an elementary theory of generalized functions. FT calculus and generalized functions are then used to study the wave equation, diffusion equation, and diffraction equation. Real-world applications of Fourier analysis are described in the chapter on musical tones. A valuable reference on Fourier analysis for a variety of students and scientific professionals, including mathematicians, physicists, chemists, geologists, electrical engineers, mechanical engineers, and others.

Classical Fourier Analysis

Classical Fourier Analysis PDF Author: Loukas Grafakos
Publisher: Springer Science & Business Media
ISBN: 0387094326
Category : Mathematics
Languages : en
Pages : 494

Get Book Here

Book Description
The primary goal of this text is to present the theoretical foundation of the field of Fourier analysis. This book is mainly addressed to graduate students in mathematics and is designed to serve for a three-course sequence on the subject. The only prerequisite for understanding the text is satisfactory completion of a course in measure theory, Lebesgue integration, and complex variables. This book is intended to present the selected topics in some depth and stimulate further study. Although the emphasis falls on real variable methods in Euclidean spaces, a chapter is devoted to the fundamentals of analysis on the torus. This material is included for historical reasons, as the genesis of Fourier analysis can be found in trigonometric expansions of periodic functions in several variables. While the 1st edition was published as a single volume, the new edition will contain 120 pp of new material, with an additional chapter on time-frequency analysis and other modern topics. As a result, the book is now being published in 2 separate volumes, the first volume containing the classical topics (Lp Spaces, Littlewood-Paley Theory, Smoothness, etc...), the second volume containing the modern topics (weighted inequalities, wavelets, atomic decomposition, etc...). From a review of the first edition: “Grafakos’s book is very user-friendly with numerous examples illustrating the definitions and ideas. It is more suitable for readers who want to get a feel for current research. The treatment is thoroughly modern with free use of operators and functional analysis. Morever, unlike many authors, Grafakos has clearly spent a great deal of time preparing the exercises.” - Ken Ross, MAA Online

The Fourier Transform and Its Applications

The Fourier Transform and Its Applications PDF Author: Ronald Newbold Bracewell
Publisher:
ISBN:
Category : Fourier transformations
Languages : en
Pages :

Get Book Here

Book Description


Fourier Analysis

Fourier Analysis PDF Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 1400831237
Category : Mathematics
Languages : en
Pages : 326

Get Book Here

Book Description
This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Abstract Harmonic Analysis

Abstract Harmonic Analysis PDF Author: Edwin Hewitt
Publisher: Springer
ISBN: 3662267551
Category : Mathematics
Languages : en
Pages : 781

Get Book Here

Book Description
This book is a continuation of Volume I of the same title [Grund lehren der mathematischen Wissenschaften, Band 115 ]. We constantly 1 1. The textbook Real and cite definitions and results from Volume abstract analysis by E. HEWITT and K. R. STROMBERG [Berlin · Gottin gen ·Heidelberg: Springer-Verlag 1965], which appeared between the publication of the two volumes of this work, contains many standard facts from analysis. We use this book as a convenient reference for such facts, and denote it in the text by RAAA. Most readers will have only occasional need actually to read in RAAA. Our goal in this volume is to present the most important parts of harmonic analysis on compact groups and on locally compact Abelian groups. We deal with general locally compact groups only where they are the natural setting for what we are considering, or where one or another group provides a useful counterexample. Readers who are interested only in compact groups may read as follows: § 27, Appendix D, §§ 28-30 [omitting subheads (30.6)-(30.60)ifdesired], (31.22)-(31.25), §§ 32, 34-38, 44. Readers who are interested only in locally compact Abelian groups may read as follows: §§ 31-33, 39-42, selected Mis cellaneous Theorems and Examples in §§34-38. For all readers, § 43 is interesting but optional. Obviously we have not been able to cover all of harmonic analysis.

Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences

Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences PDF Author: Ivor Grattan-Guiness
Publisher: Routledge
ISBN: 1134887485
Category : History
Languages : en
Pages : 856

Get Book Here

Book Description
First published in 2004. Routledge is an imprint of Taylor & Francis, an informa company.

Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences

Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences PDF Author: Ivor Grattan-Guinness
Publisher: Routledge
ISBN: 1134957505
Category : Philosophy
Languages : en
Pages : 1796

Get Book Here

Book Description
* Examines the history and philosophy of the mathematical sciences in a cultural context, tracing their evolution from ancient times up to the twentieth century * 176 articles contributed by authors of 18 nationalities * Chronological table of main events in the development of mathematics * Fully integrated index of people, events and topics * Annotated bibliographies of both classic and contemporary sources * Unique coverage of Ancient and non-Western traditions of mathematics

Homogeneous Banach Algebras

Homogeneous Banach Algebras PDF Author: Hwai-Chiuan Wang
Publisher: CRC Press
ISBN: 1000153304
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
This book examines some aspects of homogeneous Banach algebras and related topics to illustrate various methods used in several classes of group algebras. It guides the reader toward some of the problems in harmonic analysis such as the problems of factorizations and closed subalgebras.